

Circulation. published online May 8, 2013;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2013/05/07/CIR.0b013e318299cd8a.citation

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/05/03/CIR.0b013e318299cd8a.DC1.html
ACCF/AHA/SCAI CLINICAL COMPETENCE STATEMENT

ACCF/AHA/SCAI 2013 Update of the Clinical Competence Statement on Coronary Artery Interventional Procedures

A Report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training (Writing Committee to Revise the 2007 Clinical Competence Statement on Cardiac Interventional Procedures)

Writing Committee Members

John G. Harold, MD, MACC, FAHA Chair*
Theodore A. Bass, MD, FACC, FSCAI, Vice Chair†

Thomas M. Bashore, MD, FACC, FAHA, FSCAI
Ralph G. Brindis, MD, MPH, MACC, FSCAI*
John E. Brush, Jr., MD, FACC
James A. Burke, MD, PhD, FACC
Gregory J. Dehmer, MD, FACC, FAHA, FSCAI†
Yuri A. Deychak, MD, FACC
Hani Jneid, MD, FACC, FAHA, FSCAI‡
James G. Jollis, MD, FACC‡
Joel S. Landzberg, MD, FACC
Glenn N. Levine, MD, FACC, FAHA

James B. McClurken, MD, FACC
John C. Messenger, MD, FACC, FSCAI*
Issam D. Moussa, MD, FACC, FAHA, FSCAI†
J. Brent Muhlestein, MD, FACC
Richard M. Pomerantz, MD, FACC, FSCAI
Timothy A. Sanborn, MD, FACC, FAHA
Chittur A. Sivaram, MBBS, FACC
Christopher J. White, MD, FACC, FAHA, FSCAI†
Eric S. Williams, MD, FACC*

ACCF/AHA/ACP Task Force on Clinical Competence and Training Members

Jonathan L. Halperin, MD, FACC, FAHA, Chair
Geno J. Merli, MD, FACP
Ann Bolger, MD, FACC, FAHA
J. Brent Muhlestein, MD, FACC
John G. Byrne, MD, FACC
Ileana L. Pina, MD, FACC, FAHA§
Steven J. Lester, MD, FACC
Andrew Wang, MD, FACC
Howard H. Weitz, MBBS, FACC, FACP

*American College of Cardiology Foundation representative.
†Society for Cardiovascular Angiography and Interventions representative.
‡American Heart Association representative.
§Former Task Force member during the writing effort.

Authors with no symbol by their name were included to provide additional content expertise.

Author Recusals: Writing committee members are required to recuse themselves from voting on sections to which their specific relationship with industry and other entities may apply; see Appendix 1 for recusal information.

This document was approved by the American College of Cardiology Foundation (ACCF) Board of Trustees, the American Heart Association (AHA) Science Advisory and Coordinating Committee, and the Society for Cardiovascular Angiography and Interventions (SCAI) Board of Trustees in April 2013. For the purpose of complete transparency, disclosure information for the ACCF Board of Trustees, the board of the convening organization of this document, is available at: http://www.cardiosource.org/ACC/About-ACC/Who-We-Are/Leadership/Officers-and-Trustees.aspx. ACCF board members with relevant relationships with industry to the document may review and comment on the document but may not vote on approval.

ACCF/AHA/SCAI Clinical Competence Statement

Preamble

5

1. Introduction

6

1.1. Document Development Process

1.1.1. Writing Committee Organization

1.1.2. Document Development and Approval

1.2. Purpose of This Document

6

2. Percutaneous Coronary Interventions

8

2.1. Evolution of Competence and Training Standards

2.2. Evolution of Coronary Interventional Capabilities

2.3. Procedural Success and Complications of Coronary Interventional Procedures

2.3.1. PCI Success

2.3.2. PCI Complications

2.4. Patient and Lesion Variables Influencing Success and Complication Rates

2.5. Institutional Characteristics Related to Procedural Success and Complication Rates

2.5.1. Impact of the Facility on Procedural Success

2.6. Strategies for Risk Stratification and Operator Evaluation

2.7. Components of Operator Competence

2.7.1. ABIM Certification

2.8. Relationships of Institutional and Operator Experience and Activity to Outcomes in Coronary Interventional Procedures

2.8.1. Evidence Reviewed

2.8.1.1. Relationship of Institutional Volume to Procedural Outcome

2.8.1.2. Relationship of Individual Operator Volume to Procedural Outcome

2.8.1.3. Volume and Outcomes Relationship for Primary PCI in Acute MI

2.8.1.4. Outcomes Relationship for PCI in Hospitals Without Onsite Cardiac Surgery

2.8.1.5. The Interplay Between Operator and Institutional PCI Volume and Outcome

2.8.1.6. Limitations of the Existing Evidence

2.8.2. Volume as a Surrogate for Quality

2.8.2.1. Plausible Explanations for the Volume-Outcome Relationship

2.8.2.2. Lifetime PCI Experience Relationship to Quality

2.8.2.3. Caution Against Preoccupation with Specific Volume Recommendations

2.8.3. Conclusions

31

2.9. Radial Access

39

2.9.1. Training

40

2.9.2. Competency

41

2.10. Quality Assurance

43

2.10.1. Definition of Quality in PCI

43

2.10.2. Institutional Requirement for a Quality Assurance Program

43

2.10.3. Complexity of Determination of PCI Quality

44

2.10.3.1. Identification of PCI Quality Indicators

44

2.10.3.2. Role of Risk Adjustment in Assessing Quality

44

2.10.3.3. National Benchmarking

45

2.10.3.4. Other Challenges in Determining Quality

45

2.10.4. Requirement for Institutional Resources and Support

46

2.10.5. Quality Assessment and Implementation Processes

46

2.10.5.1. The Peer Review Process

47

2.10.5.2. Methods of Remediation

47

2.10.5.3. Confidentiality

48

2.10.6. Conclusions

48
2.11. Summary of Key Recommendations for PCI

3. Other Coronary Interventions

3.1. Alcohol Septal Ablation for Hypertrophic Obstructive Cardiomyopathy

3.1.1. Background

3.1.2. Criteria for Competency

3.1.2.1. Operator Competency

3.1.2.2. Staff Competency

3.2. Alcohol Ablation for Ventricular Arrhythmias

3.2.1. Background

3.2.2. Criteria for Competency

3.3. Coronary Artery Fistula Closure

3.3.1. Background

3.3.2. Criteria for Competency

3.3.2.1. Operator Competency

3.3.2.2. Staff Competency

3.4. Summary of Key Recommendations Regarding “Other Coronary Interventions”

References

Appendix 1. Author Relationships with Industry and Others Entities (Relevant)

Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)

Appendix 3. Acronyms and Abbreviations List
Preamble

Granting clinical staff privileges to physicians is the primary mechanism institutions use to uphold quality care. The Joint Commission requires that medical staff privileges be based on professional criteria specified in medical staff bylaws. Physicians themselves are charged with defining the criteria that constitute professional competence and with evaluating their peers accordingly. The process of evaluating physicians' knowledge and competence has become more complex as various subspecialties have evolved over time.

The American College of Cardiology Foundation (ACCF)/American Heart Association (AHA)/American College of Physicians (ACP) Task Force on Clinical Competence and Training was formed in 1998 to develop recommendations for attaining and maintaining the cognitive and technical skills necessary for the competent performance of a specific cardiovascular service, procedure, or technology. These documents are evidence based, and where evidence is not available, expert opinion is used to formulate recommendations. Indications for and contraindications to specific services or procedures are not included in the scope of these documents. Recommendations are intended to assist those who must judge the competence of cardiovascular healthcare providers entering practice for the first time and/or those in practice undergoing periodic review of their expertise. The assessment of competence is complex and multidimensional; therefore, isolated recommendations contained herein may not necessarily be sufficient or appropriate for judging overall competence. The current document addresses competence in coronary-based cardiovascular interventional procedures and is authored by representatives of the ACCF, the AHA, and the Society for Cardiovascular Angiography and Interventions (SCAI). This document applies to specialists trained in internal medicine and adult cardiology and is not meant to be a clinical competence statement on procedures for congenital heart disease in the child or young adult.

To avoid actual, potential, or perceived conflicts of interest that may arise as a result of industry relationships or personal interests among the writing committee, all members of the writing committee, as well as peer reviewers of the document, are asked to disclose all current healthcare-related relationships, including those existing 12 months before initiation of the writing effort. The ACCF/AHA/ACP Task Force on Clinical Competence and Training reviews these disclosures to determine what companies make products (on market or in development) that pertain to the document under development. Based on this information, a writing committee is formed to include a majority of members with no relevant relationships with industry or other entity (RWI), led by a chair with no relevant RWI. Authors with relevant RWI are not permitted to draft or vote on text or recommendations pertaining to their RWI. RWI is reviewed on all conference calls and updated as changes occur. Author and peer reviewer RWI
pertinent to this document are disclosed in Appendices 1 and 2, respectively. Additionally, to ensure complete transparency, authors’ comprehensive healthcare-related disclosure information — including RWI not pertinent to this document — is available online (see Online Appendix 3). Disclosure information for the ACCF/AHA/ACP Task Force on Clinical Competence and Training is also available online at http://www.cardiosource.org/ACC/About-ACC/Who-We-Are/Leadership/Guidelines-and-Documents-Task-Forces.aspx, as well as the ACCF disclosure policy for document development at http://www.cardiosource.org/Science-And-Quality/Practice-Guidelines-and-Quality-Standards/Relationships-With-Industry-Policy.aspx.

The work of the writing committee was supported exclusively by the ACCF without commercial support. Writing committee members volunteered their time to this effort. Conference calls of the writing committee were confidential and attended only by committee members.

Jonathan L. Halperin, MD, FACC, FAHA
Chair, ACCF/AHA/ACP Task Force on Clinical Competence and Training

1. Introduction
Physician competence is an essential component in the provision of optimal health care. Physicians must have the appropriate training, fund of knowledge, clinical decision-making, and technical skills to deliver their services in a competent and caring manner. Healthcare systems and payers also expect optimal care delivered in an efficient and cost-sensitive manner. In formulating conclusions and recommendations it is important to emphasize that the ultimate goal of setting standards is to facilitate the attainment of optimal patient outcomes. Optimal outcome is most likely when operators select clinically appropriate patients for interventional procedures and perform these procedures at a requisite level of proficiency and competency. Institutional and programmatic quality is ultimately determined by its success in achieving that goal.

This document is an update of the 2007 ACCF/AHA/SCAI Clinical Competence Statement on Cardiac Interventional Procedures (1). The operator and institutional volume discussion, conclusions, and recommendations in this document supersede the recommendations in the 2011 ACCF/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (PCI) (2). Although the 2011 PCI guideline includes recommendations regarding operator and institutional volume, it was anticipated that this current writing committee tasked specifically with examining volume thresholds would be the primary source and that the PCI guidelines would be subsequently modified.
1.1. Document Development Process

1.1.1. Writing Committee Organization
The writing committee consisted of a broad range of members representing 3 societies, identified on the basis of 1 or more of the following attributes: PCI operators with experience in various clinical settings (e.g., private practice, hospital-based, and academic settings; high-, medium-, and low-volume operators; small, medium, and large catheterization labs; hybrid labs; and labs with and without surgical backup); physicians experienced in both radial and femoral access; physicians with broad clinical experience who have had considerable previous involvement with PCI; physicians with expertise in systems of care for patients presenting with acute myocardial infarction; a cardiac surgeon; cardiovascular training program directors; catheterization laboratory directors with experience managing a broad cross section of interventional operators; general cardiologists; quality assurance experts; and clinical researchers who have studied PCI outcomes. This writing committee met the College’s disclosure requirements for relationships with industry as described in the Preamble.

1.1.2. Document Development and Approval
The writing committee convened by conference call and email to finalized the document outline, develop the initial draft, revise the draft per committee feedback, and, ultimately, sign off on the document for external peer review. The ACCF, AHA, and SCAI participated in peer review, resulting in 36 reviewers representing 316 comments. Comments were reviewed and addressed by the writing committee. A member of the ACCF/AHA/ACP Task Force on Clinical Competence and Training served as lead reviewer to ensure that all comments were addressed adequately. Both the writing committee and Task Force approved the final document to be sent for Board review. The ACCF Board of Trustees, AHA Science Advisory and Coordinating Committee, and the SCAI Board of Trustees reviewed the document, including all peer review comments and writing committee responses, and approved the document in April 2013. This document is considered current until the Task Force on Clinical Competence and Training revises or withdraws it from publication.

1.2. Purpose of This Document
This document was developed to review the currently available scientific data with the following purposes:

1. To characterize the expected success and complication rates for coronary artery interventional procedures when performed by skilled operators.
2. To identify comorbidities and other risk factors that may be used for risk adjustment when assessing procedure-specific expected success and complication rates.
3. To assess the relationship between operator activity level and success rates in PCI procedures as assessed by risk-adjusted outcome statistics.

4. To assess the relationship between institutional activity level and success rates in PCI procedures as assessed by risk-adjusted outcome statistics.

5. To develop recommendations for assessment of operator proficiency and institutional program quality, including data collection to permit monitoring of appropriateness and effectiveness of PCI procedures both at the level of the operator and the institution.

6. To assess the use of coronary procedures in patients with structural disease.

This document addresses coronary based interventions in the adult and does not address procedures for non-coronary based interventions involving structural heart disease in the child or adult.

2. Percutaneous Coronary Interventions

2.1. Evolution of Competence and Training Standards

PCI has become a widely practiced and integral component of cardiovascular therapy. The subspecialty has evolved into treating a wide range of both stable and acutely ill patients presenting with a broad spectrum of not only increasingly complex coronary artery disease, but also other cardiovascular conditions. The range and complexity of the equipment, adjunctive techniques, and ancillary components used to perform PCI (along with the clinical settings in which it is utilized, e.g., elective and acute coronary disease; native vessel and venous bypass; and lesion location and characteristics) have also evolved dramatically. Coincident with this has been recognition of the specialized knowledge and technical skills required to perform PCI, and the critical roles of formalized training, continuing education, and outcomes monitoring. Formal interventional cardiology training programs were first organized in the 1980s; and, in 1999, the American Board of Internal Medicine (ABIM) offered its first examination for added certification in Interventional Cardiology. Currently, eligibility to qualify for this examination requires board certification in general cardiology, and successful completion of a 1-year dedicated interventional cardiology fellowship, in a program accredited by the Accreditation Council of Graduate Medical Education (ACGME). In 2012-13, there were 141 ACGME-accredited programs in Interventional Cardiology, with 319 enrolled fellows. The current ACGME program and educational requirements for interventional cardiology were published in 2007; new/updated requirements became effective July 2012 (3). The ACCF has further contributed to the definition of training standards and recommendations via its Adult Cardiovascular Medicine Core Cardiology Training (COCATS) documents (4).
During the past several years there has also been a move toward a more structured definition of competency-based requirements and training. This includes the use of the 6 competency domains promulgated by the ACGME, and adopted and endorsed by the ABIM (medical knowledge; patient care and procedures; practice-based learning; systems-based practice; interpersonal and communication skills; and professionalism). This format is also increasingly utilized not only for training programs, but also for demonstration of maintenance of competency for practicing physicians. ACCF has also adopted this format as part of its training and lifelong learning competency documents, and has developed tools and programs to assist physicians in assessing, enhancing, and documenting competency. Section 2.7 of this document depicts core competency components of PCI utilizing this structure. A key characteristic of a competency-based system is the use of outcomes-based evaluations. For training programs, the evaluation tools, for example, include direct observation by instructors, as well as in-training examination, procedure logbooks/portfolios, and simulation. For practicing physicians, the maintenance of the competencies can include, for example, physician-specific data from registries (e.g., ACCF-National Cardiovascular Data Registry [NCDR®]) as well as from hospital databases and quality programs, along with maintenance of certification (MOC) and continuing medical education (CME). The competency framework includes definitions of competency components and potential evaluation tools related to an individual’s practice-based learning, as well as skills related to working effectively in healthcare systems, communication with patients and other members of the healthcare team, and professionalism (see Section 2.7).

2.2. Evolution of Coronary Interventional Capabilities
Andreas Gruentzig pioneered the field of coronary intervention with the first coronary balloon angioplasty in 1977 (5,6). During the past 35 years, the field has rapidly expanded. The evolution of the cognitive and technical knowledge base for proficiency in PCI has paralleled the advancements in interventional equipment and the broadening of clinical and angiographic indications for PCI.

Although the basic structure of coronary balloons and atherectomy devices has not changed substantially over the years, the development of the coronary artery stent dramatically altered the practice of coronary intervention. The initial stents available markedly reduced the need for PCI-related emergency coronary bypass surgery (7), and drug-eluting stents have substantially lowered the occurrence of restenosis and the need for repeat revascularization following PCI (8). These technical innovations continue to evolve at a rapid pace with new devices on the horizon (9,10). These advances come with the responsibility that the interventional cardiologist acquires the technical and cognitive skills necessary to use these emerging devices optimally to provide the best outcomes for their patients.

In tandem with these technical developments, the use of PCI has expanded to more complex lesion subsets such as chronic total occlusions, left main stenosis, and bifurcation lesions (11). These
unmet needs spurred industry to produce an expanding selection of specialized devices (e.g., balloons, catheters, wires, and dedicated stents) to facilitate successful procedure completion. Similar to the evolution in the device field, pharmacological advances have continued at a robust pace contributing to the increased clinical benefit appreciated by patients in recent years (12). These advances most notably involving antithrombotic and antiplatelet agents require the interventional cardiologist to have a solid working knowledge of the pharmacokinetics, indications, contraindications, and optimal timing long-term monitoring of these drugs (13,14). New oral antithrombin and anti-Xa agents are emerging which require further understanding of their indications and side effects.

The recognition that coronary angiography provides an imperfect assessment of coronary structure and stenosis severity has led to new imaging modalities such as intravascular ultrasound, optical coherence tomography, and near infrared spectroscopy (15). Assessment of the intermediate severity stenosis based on the coronary angiogram alone has always been challenging. Following publication of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) trial (16), functional testing of angiographic intermediate coronary stenosis with measurement of the fractional flow reserve is now increasingly recommended when noninvasive evidence of ischemia is absent before considering revascularization of such lesions. Furthermore, the FAME 2 trial demonstrated that a fractional flow reserve-guided PCI strategy in patients with stable angina improves outcome beyond that of optimal medical therapy, particularly with regard to reduction of repeat hospitalization for coronary ischemia (17). The correct application of all these new devices requires continued expansion of both cognitive and procedural skill sets by the practicing interventional cardiologist.

Finally, the increasing complexity of PCI in patients with poor cardiac reserve has encouraged the development of several percutaneous left ventricular support devices (18). Insertion and monitoring of these devices necessitates a solid understanding of cardiovascular hemodynamics. In summary, the evolution of the field of interventional cardiovascular medicine has, and will continue, to require an unwavering commitment from the physician community to maintain excellence through lifelong learning.

2.3. Procedural Success and Complications of Coronary Interventional Procedures

2.3.1. PCI Success

PCI success can be defined using angiographic, procedural, and clinical variables. Factors associated with increased success and decreased complication rates include improvements in equipment (e.g., balloon catheters, guide catheters, guidewires), coronary stents (bare-metal stents and drug-eluting stents), embolization protection, aspiration thrombectomy devices, and advances in adjunctive pharmacotherapy (2,19-23).
Historically angiographic success for balloon angioplasty has been defined as a reduction of minimum percent diameter stenosis to <50% with TIMI grade 3 flow and without side branch loss, flow-limiting dissection or angiographic thrombus. For coronary stents, a minimum percent diameter stenosis of <20% was the previous angiographic benchmark of an optimal result (24,25). However, with current stents and the recognized importance of adequate stent deployment (26,27), the 2011 ACCF/AHA/SCAI PCI guideline suggests a minimum percent diameter stenosis of <10% (or optimally as close to 0% as possible) as the new angiographic benchmark for stent results (2). In addition, following the conclusion of a successful procedure, there should be TIMI grade 3 flow and no occlusion of a significant side branch, flow-limiting dissection, distal embolization, or angiographic thrombus.

Procedural success is defined as angiographic success without in-hospital major complications such as death, myocardial infarction (MI), stroke, and emergency coronary artery bypass graft (CABG) surgery. The definition of PCI-related MI has evolved over time and the current definition is provided below in section 2.3.2 (2,24,25,28-30).

Short-term clinical success includes angiographic and procedural success with the subsequent relief of signs and/or symptoms of myocardial ischemia. Long-term clinical success requires that the relief of myocardial ischemia remains durable, persisting for more than 1 year after the procedure (2). The most common reason for a failure of long-term clinical success has been restenosis. Stent thrombosis is an uncommon, but an important cause of short- and long-term clinical failure.

2.3.2. PCI Complications
PCI complications were reviewed comprehensively in the 2011 ACCF/AHA/SCAI PCI guideline (2). Major PCI-related complications include death, MI, emergency CABG surgery, and stroke, commonly denoted as MACCE (major adverse cardiovascular and cerebrovascular events). Other important complications include vascular complications (e.g., pseudoaneurysm, arteriovenous fistula, retroperitoneal bleeding, clinically overt atheroembolism), any major bleeding, and contrast nephropathy. The incidence of in-hospital mortality for PCI, determined from the NCDR® CathPCI database between 2004 and 2007, was 1.27%, ranging from 0.65% in elective procedures to 4.81% for PCI performed in the setting of ST-segment elevation myocardial infarction (STEMI) (31). However, an important perspective is provided from a large contemporary single-center series reporting an overall mortality of approximately 1%, but with half of all deaths due to primarily noncardiac causes (32). The incidence of PCI-related MI depends on the criteria used to define MI. The clinical significance of “enzymatically-defined” MIs in the absence of clinical or angiographic correlates has been controversial. The third iteration of the ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction now requires for the diagnosis of PCI-related MI (“type 4a”) both 1) elevation of troponin (>5 x 99th percentile upper
reference limit in patients with normal baseline values or a rise in troponin values >20% if the baseline values are elevated and stable or falling) and 2) either symptoms suggestive of myocardial ischemia, or new ischemic ECG changes (or new left bundle-branch block), or angiographic evidence of PCI complication, or imaging demonstrating new loss of viable myocardium (30). The need for emergency CABG surgery for a failed PCI has decreased dramatically especially since the introduction of coronary artery stents noting an incidence of 0.4% reported from the NCDR® database from 2004-2006 (33). The incidence of PCI-related stroke is also low at 0.22%, however in-hospital mortality for these patients is quite high, reported to be 25%-30% (34,35). Finally, it has been recently appreciated that periprocedural bleeding is associated with increased mortality and accordingly strategies to avoid bleeding are continuing to be developed (36,37). Factors reported to be associated with an increased risk of bleeding include advanced age, low body mass index, chronic kidney disease, baseline anemia, excessive platelet and/or thrombin inhibition, noncompressible vascular access site, and larger sheath size (2,38,39).

2.4. Patient and Lesion Variables Influencing Success and Complication Rates

Patient characteristics associated with an increased risk of adverse outcome include advanced age, diabetes, chronic kidney disease, heart failure, multivessel disease, clinical presentation with an acute coronary syndrome (NSTEMI or STEMI), and cardiogenic shock (31,40-42). Lesion-related characteristics associated with increased complications and/or lower procedural success include lesion length, thrombus, degenerated saphenous vein grafts, and chronic total occlusions (40,43). With advances in PCI technology, lesion morphology may be currently less predictive of procedural complications compared to the past (44).

The most widely accepted model to predict PCI mortality is the NCDR® CathPCI Risk Score system (Table 1), which utilizes multiple variables to predict inpatient mortality (2,31). This model performs very well (C statistic: approximately 0.90), although the predictive capability decreases in high-risk patients. Consideration of certain general and neurological patient factors in addition to NCDR® variables improves the predictive value of the model (32). Consideration of “compassionate use” features (coma on presentation, active hemodynamic support during PCI, and cardiopulmonary resuscitation at PCI initiation) has similarly been shown to increase the predictive ability of the model (45). Models to predict procedural success include the modified ACC/AHA score (40) and the SCAI score (46,47) (Table 2), with good to very good discrimination (C statistic 0.70 to 0.82). More recently, the SYNTAX score, which is based on an angiographic calculation, has been shown to have value determining which patients with unprotected left main or multivessel disease undergoing PCI are at greatest risk for long-term major adverse cardiac events (MACE) (48-50). There are similar models available that help predict bleeding in patients with acute coronary syndromes undergoing PCI. Best treatment option proposals are facilitated
by the heart team approach endorsed as a Class I recommendation by the ACCF, AHA, STS, and AATS, particularly when addressing complex patients and/or coronary anatomy. An operator should be familiar with the concepts of anatomical and clinical risk to facilitate optimal clinical decision-making when recommending a revascularization strategy for an individual patient.
Table 1. The NCDR® CathPCI Risk Score System

<table>
<thead>
<tr>
<th>Variable</th>
<th>Scoring Response Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><60 years</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cardiogenic shock</td>
<td>No 0</td>
</tr>
<tr>
<td>Prior CHF</td>
<td>No 0</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>No 0</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>No 0</td>
</tr>
<tr>
<td>GFR</td>
<td><30 ml/min 18</td>
</tr>
<tr>
<td>NYHA functional class IV</td>
<td>No 0</td>
</tr>
<tr>
<td>PCI status (STEMI)</td>
<td>Elective 12</td>
</tr>
<tr>
<td>PCI status (no STEMI)</td>
<td>Elective 0</td>
</tr>
</tbody>
</table>

Risk Score Calculation

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Risk of In-Patient Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>25</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>1.1</td>
</tr>
<tr>
<td>35</td>
<td>2.0</td>
</tr>
<tr>
<td>40</td>
<td>3.6</td>
</tr>
<tr>
<td>45</td>
<td>6.3</td>
</tr>
<tr>
<td>50</td>
<td>10.9</td>
</tr>
<tr>
<td>55</td>
<td>18.3</td>
</tr>
<tr>
<td>60</td>
<td>29.0</td>
</tr>
<tr>
<td>65</td>
<td>42.7</td>
</tr>
<tr>
<td>70</td>
<td>57.6</td>
</tr>
<tr>
<td>75</td>
<td>71.2</td>
</tr>
<tr>
<td>80</td>
<td>81.0</td>
</tr>
<tr>
<td>85</td>
<td>89.2</td>
</tr>
<tr>
<td>90</td>
<td>93.8</td>
</tr>
<tr>
<td>95</td>
<td>96.5</td>
</tr>
<tr>
<td>100</td>
<td>98.0</td>
</tr>
</tbody>
</table>

CathPCI indicates catheterization percutaneous coronary intervention; CHF, congestive heart failure; GFR, glomerular filtration rate; NCDR®, National Cardiovascular Data Registry; NYHA, New York Heart Association; and STEMI, ST-segment elevation myocardial infarction.

Reprinted with permission from Peterson et al (31).
Table 2. The SCAI Lesion Classification System

<table>
<thead>
<tr>
<th>Type I lesions (highest success expected, lowest risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Does not meet criteria for C lesion</td>
</tr>
<tr>
<td>2. Patent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type II lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Meets any of these criteria for ACC/AHA C lesion</td>
</tr>
<tr>
<td>Diffuse (>2 cm length)</td>
</tr>
<tr>
<td>Excessive tortuosity of proximal segment</td>
</tr>
<tr>
<td>Extremely angulated segments, >90 degrees</td>
</tr>
<tr>
<td>Inability to protect major side branches</td>
</tr>
<tr>
<td>Degenerated vein grafts with friable lesions</td>
</tr>
<tr>
<td>2. Patent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type III lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Does not meet criteria for C lesion</td>
</tr>
<tr>
<td>2. Occluded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type IV lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Meets any of these criteria for ACC/AHA C lesion</td>
</tr>
<tr>
<td>Diffuse (>2 cm length)</td>
</tr>
<tr>
<td>Excessive tortuosity of proximal segment</td>
</tr>
<tr>
<td>Extremely angulated segments, >90 degrees</td>
</tr>
<tr>
<td>Inability to protect major side branches</td>
</tr>
<tr>
<td>Degenerated vein grafts with friable lesions</td>
</tr>
<tr>
<td>Occluded for >3 months</td>
</tr>
<tr>
<td>2. Occluded</td>
</tr>
</tbody>
</table>

ACC indicates American College of Cardiology; AHA, American Heart Association; and SCAI, Society for Cardiovascular Angiography and Interventions.

Reprinted with permission from Krone et al. (47).
2.5. Institutional Characteristics Related to Procedural Success and Complication Rates

2.5.1. Impact of the Facility on Procedural Success

Physical facility requirements. Characteristics of the physical facility in which interventional procedures are performed have important influences on achieving procedural success. The facility must provide the necessary radiologic, monitoring, and adjunctive patient support equipment to enable operators to perform in the safest and most effective environment. The real-time fluoroscopic and acquired image quality must be optimal to facilitate accurate catheter and device placement and facilitate the correct assessment of procedural results. Physiologic monitoring equipment must provide continuous, accurate information about the patient’s condition. Access to other diagnostic modalities such as intravascular ultrasound and fractional flow reserve should be available. Hemodynamic support devices such as intra-aortic balloon pumps and percutaneous ventricular assist devices should be available in institutions routinely performing high-risk PCI. These requisite support equipment must be available and in good operating order to respond to emergency situations (51).

Overall institutional system requirements. The interventional laboratory must have a support system of specifically-trained laboratory personnel. Access to (or a detailed plan to access) cardiothoracic surgical, respiratory, and anesthesia services should be available to respond to emergency situations in order to minimize detrimental outcomes (51). The ACCF/AHA/SCAI PCI guideline supports the heart team approach to revascularization for high-risk complex patients(2). The institution should have systems for credentialing, governance, data gathering, and quality assessment. Prospective, unbiased collection of key data elements on all patients and consistent timely feedback of results to providers brings important quality control to the entire interventional program and is critical to assessing and meeting Appropriate Use Criteria for coronary revascularization (52). The 2011 ACCF/AHA/SCAI PCI guideline update (2) recommends that:

- Primary PCI (PPCI) is reasonable in hospitals without onsite cardiac surgery, provided that appropriate planning for program development has been accomplished (Class IIa) (53,54).
- Elective PCI might be considered in hospitals without onsite cardiac surgery, provided that appropriate planning for program development has been accomplished and rigorous clinical and angiographic criteria are used for proper patient selection (Class IIb) (54-56).
- Primary or elective PCI should not be performed in hospitals without onsite cardiac surgery capabilities without a proven plan for rapid transport to a cardiac surgery operating room in a nearby hospital or without hemodynamic support capability for transfer (Class III).
2.6. Strategies for Risk Stratification and Operator Evaluation

Large prospective and retrospective databases involving patients undergoing PCI have identified clinical and angiographic characteristics that correlate with procedural success, in-hospital morbidity, and mortality (57-59). These observations have been used to develop multivariate logistic regression models that can stratify patients before the procedure and also predict outcomes based on events during the procedure.

Risk stratification is not perfect and is frequently developed from a large population analysis and must then be validated prospectively in robust clinical data sets. Reliability of the model is best assessed by relative predictive accuracy (C statistic: moderate is >0.80, excellent is >0.90) and scaling accuracy (the Hosmer-Lemeshow statistic). Several models predict periprocedural mortality with C statistic >0.80. Efforts are underway to formulate periprocedural bleeding and postprocedural contrast-induced nephropathy models (60-62).

Model utility also must consider the frequency and clinical importance of the event measured. Very infrequent events, even if severe, may not allow adequate evaluation of operators with low volume. Results of several years of experience must be considered to have a sufficient number of events to support statistical validity without excessive large confidence intervals. Operators and catheterization laboratories should be strongly encouraged to submit information to large and transparent clinical databases that allow for adequate benchmarking and the development of contemporary risk-adjusted outcomes. Comparison of operator outcomes should be only 1 component of a comprehensive continuous quality improvement program at a facility.
2.7. Components of Operator Competence

Table 3 identifies the components of operator competence for PCI utilizing the ACGME core competency structure (see section 2.1.). Included in each of the sections are potential tools for evaluation and outcome assessment.

Table 3. Core Competency Components for Percutaneous Coronary Interventions (PCI).

<table>
<thead>
<tr>
<th>Medical Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Know normal coronary artery anatomy, its variations and congenital abnormalities, and the physiology of coronary/myocardial blood flow.</td>
</tr>
<tr>
<td>2. Know the pathology of atherosclerotic and non-atherosclerotic coronary diseases.</td>
</tr>
<tr>
<td>3. Know the causes, pathophysiology, and differential diagnosis of myocardial ischemia and infarction.</td>
</tr>
<tr>
<td>4. Know the pathophysiology, clinical characteristics, and management of PCI-related spasm, slow reflow, abrupt closure, and restenosis.</td>
</tr>
<tr>
<td>5. Know the structural and polymer characteristics of coronary stents and drugs incorporated in them.</td>
</tr>
<tr>
<td>6. Know the coagulation cascade, and the indications, risks, and clinical pharmacology of antiplatelet, anticoagulant, and fibrinolytic drugs used in conjunction with, or in place of, PCI.</td>
</tr>
<tr>
<td>7. Know the indications for PCI and the adjunctive and alternative uses of medical therapy and surgery for patients with coronary artery disease.</td>
</tr>
<tr>
<td>8. Know the methods to assess functional significance of coronary lesions in the catheterization laboratory.</td>
</tr>
<tr>
<td>9. STEMI: know the roles of time of presentation, facility capability, anticipated door-to-device time, presence or absence of ongoing symptoms, and ECG abnormalities on the selection of reperfusion strategy.</td>
</tr>
<tr>
<td>10. Know the signs and hemodynamics of cardiac dysfunction, and their impact on reperfusion strategy and PCI decisions.</td>
</tr>
<tr>
<td>11. Know the limitations and contraindications of PCI, particularly as these relate to comorbid systemic diseases and special anatomical subsets,</td>
</tr>
<tr>
<td>12. Know the specialized equipment, techniques, and devices used to perform PCI, including, but not limited to:</td>
</tr>
<tr>
<td>X-ray imaging, radiation safety, and measures to minimize radiation exposure of patients, operators, and staff.</td>
</tr>
<tr>
<td>Specialized catheterization recording and safety equipment (physiological data recorders, pressure transducers, blood gas analyzers, defibrillators).</td>
</tr>
<tr>
<td>Catheters, guidewires, balloon catheters, stents, atherectomy devices, ultrasound catheters, intra-aortic balloon pumps, puncture site sealing devices, contrast agents, distal protection devices, and thrombus extraction devices.</td>
</tr>
<tr>
<td>13. Know the risk factors for, and the signs and management of, major PCI procedural complications & bleeding—including coronary vascular (e.g., dissection, thrombosis, perforation, embolization), and other vascular (e.g., pseudoaneurysm, retroperitoneal hemorrhage, arteriovenous fistula, and stroke) complications.</td>
</tr>
<tr>
<td>14. Know the systemic complications of PCI, including acute pulmonary congestion and contrast-related nephropathy, along with mechanisms to reduce their risk of occurrence.</td>
</tr>
</tbody>
</table>

Evaluation Tools: **ABIM-IC certifying examination; maintenance of ABIM-IC certification (MOC)(see section 2.7.1.); accredited CME**

<table>
<thead>
<tr>
<th>Patient Care & Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Skill to integrate clinical and laboratory data in selecting appropriate candidates for PCI, incorporating evidence-based guideline and clinical trial information.</td>
</tr>
<tr>
<td>2. Skills to perform percutaneous arterial (femoral and brachial/radial) and venous access, including postprocedural management and appropriate use of closure devices.</td>
</tr>
<tr>
<td>3. Skills to perform and analyze coronary angiograms, assess functional significance of coronary lesions, and determine risk/benefit of PCI (and the type of PCI) versus alternative revascularization or medical treatments.</td>
</tr>
<tr>
<td>4. Skills to effectively and safely operate and manipulate intravascular guidewires, coronary angioplasty balloon catheters, atherectomy devices, and coronary stents.</td>
</tr>
<tr>
<td>5. Skill to appropriately select and utilize intracoronary ultrasound, Doppler flow wires, and pressure wires.</td>
</tr>
</tbody>
</table>
6. Achievement of volume and quality outcome benchmarks for PCI – in training and in practice.
7. Skills to promptly detect and treat complications of PCI – both in the laboratory and postprocedure.
8. Skills to promptly recognize, identify cause, and treat hemodynamic instability, including the appropriate emergent use of pharmacologic agents and/or percutaneous mechanical circulatory assist devices.
9. Skills to carry out postprocedural evaluation, establish medical regimen and subsequent outpatient follow up; including appropriate use of follow-up outpatient testing.

Evaluation Tools: ABIM-IC certification; direct observation; professional society (ACCF) registries; hospital quality programs; conference participation

Practice-based Learning and Improvement

1. Review personal outcomes data via registry and/or hospital quality monitoring programs to identify and carry out areas of focused education or quality initiative.
2. Attend at least 30 hours of PCI CME every 2 years (this may include participation in the hospital’s CME-approved multidisciplinary catheterization conference).
3. Participate in PCI quality programs of the hospital, including review of major complications.
4. Carry out structured education regarding new technologies and procedures.

Evaluation Tools: Professional society registry data; hospital/catheterization lab quality data; catheterization/ morbidity and mortality conferences; simulation; ABIM-IC MOC.

Systems-based Practice

1. Participate in regular (at least monthly) catheterization laboratory conferences, including participation by clinical cardiologists, interventional operators, and cardiothoracic surgeons.
2. Participate in a hospital-based state, regional, or national database to measure risk-adjusted PCI outcomes of the laboratory and compare them to regional and national benchmarks for improving quality of care.
3. Incorporate risk/benefit and cost awareness factors in clinical decisions and management of patients undergoing PCI.
4. Effectively lead the catheterization laboratory team in the performance of the procedure and care of the patient.
5. In conjunction with the hospital, ensure that the catheterization laboratory meets the following requirements:
 - Provides safe and quality radiologic, monitoring, and patient support equipment.
 - Has appropriate and qualified staffing.

Evaluation Tools: Multisource (360) evaluations, professional society registry outcomes data; hospital/catheterization lab quality data.

Professionalism

1. Practice evidence-based, guideline-directed, and patient-centered care within the scope of personal technical skills and expertise.

Evaluation Tools: Multisource evaluations; outcomes and registry data

Interpersonal Skills and Communication

1. Communicate effectively and demonstrate sensitivity with patients across a broad socioeconomic, ethnic, and cultural spectrum.
2. Communicate effectively and professionally (and carry out effective transition) with referring physicians and other members of the cardiovascular team.

Evaluation Tools: Patient satisfaction data; multisource (360) evaluations

ABIM-IC indicates American Board of Internal Medicine-Interventional Cardiology; ACCF American College of Cardiology Foundation; CME, continuing medical education; ECG, electrocardiography; MOC, maintenance of certification; PCI, percutaneous coronary intervention; STEMI, ST elevation myocardial infarction.
2.7.1. **ABIM Certification**

Although ABIM-IC certification and MOC are strongly recommended, it is recognized that for some individuals not eligible for ABIM certification because their training was obtained outside the United States, alternative tools may be acceptable. Interventional cardiologists should also attain at least 30 hours of CME every 2 years.

2.8. **Relationships of Institutional and Operator Experience and Activity to Outcomes in Coronary Interventional Procedures**

Since the original observation by Luft et al. (63) in 1979 showing fewer deaths among patients undergoing procedures at higher-volume hospitals, the interplay of volume and outcome has been the subject of much investigation. In 1988, the ACC and AHA first adopted a physician volume standard of about 1 percutaneous transluminal coronary angioplasty (PTCA) case/week to maintain proficiency (64). The first Clinical Competence Statement on PTCA was subsequently published in 1990 by the ACP/ACC/AHA Task Force on Clinical Privileges in Cardiology and advocated a minimum of 75 PTCA procedures/year to maintain continuing competence (65). Since then, the use of PCI volume as a surrogate for quality and the adoption of arbitrarily-defined annual volume standards, despite the lack of definitive evidence, have generated much controversy (66,67).

2.8.1. **Evidence Reviewed**

Search Strategy

To compile the relevant available scientific evidence relating institutional and operator activity level to outcomes (Online Appendices 1-3), we performed a computerized systematic literature search of all publications using Medline (PubMed and Ovid) and Cochrane Databases for studies published since January 1990. We also reviewed abstracts from recent ACCF, AHA, European Society of Cardiology, and Transcatheter Cardiovascular Therapeutics (TCT) proceedings, solicited manuscripts under review for publication from experts in the field, and conducted a manual review of the reference lists from the available studies. Greater weight was given to recent, peer-reviewed publications of high quality. No single work was considered definitive and the shortcomings of the reviewed studies are discussed at length below.

2.8.1.1. **Relationship of Institutional Volume to Procedural Outcome**

We identified 17 studies examining the impact of institutional volume to outcomes of PCIs (Online Appendix 1). Of the 8 studies conducted in the PTCA era (46,68-74), all except 1 (68) demonstrated a relationship between hospital volume and outcomes, with lower volume predicting predominantly the need for in-hospital CABG surgery (6 studies) (69-74) or in-hospital mortality (4 studies) (70-73). Of the
9 studies (57,58,75-81) in the stent era, 6 studies demonstrated an inverse relationship between mortality and PCI volume (57,58,75,78-80), 1 study showed a decrease in 30-day and 2-year CABG surgery in high-volume hospitals (77); and another showed a reduction in 30-day and 1-year adjusted rates death, MI, or target-vessel revascularization in high-volume hospitals (81). The relationship between institutional procedural volume and outcome has been confirmed by multiple contemporary large registries, of which 3 included >100,000 patients (58,75,78).

A recent meta-analysis examined the relation between volume and outcome of PCI in 10 reports between 1995 and 2003 from an original pool of 140 papers (82). Of those, 8 studies were conducted in the United States and 7 used high-quality clinical data. The final meta-analysis included 1,322,342 patients from 1,746 hospitals. Patients treated in high-volume hospitals (≥600 PCIs/year) experienced lower in-hospital mortality (OR=0.87; 95% CI: 0.83 to 0.91) compared to patients treated in lower-volume hospitals (400 to 600 PCIs per year) (Figure 1) noting moderate heterogeneity existed. When limiting the analyses to studies using the cut-off point of 400 PCIs/year, heterogeneity was diminished but the effect estimate remained unchanged (OR=0.86, CI: 0.82 to 0.90). Interestingly, the more contemporary studies suggested a slightly smaller effect size than earlier studies (p=0.06); however, meta-regression did not show notable changes in the effect size over the years (82).

Overall, the preponderance of data suggests that hospitals in which fewer coronary interventions are performed have a greater incidence of adverse events, notably death and CABG surgery for failed intervention, than hospitals performing more procedures. This relation is supported by earlier studies in the PTCA era (46,69-74), contemporary studies in the stent era (57,58,75-81), and a recent meta-analysis (82). The writing committee recognizes the wide variability of institutional volume thresholds used in the different studies and the complexity and multitude of factors influencing PCI outcomes. However it is important to note that a signal exists suggesting that an institutional volume threshold < 200 PCIs/year appears to be consistently associated with worse outcomes across the various studies (Online Appendix 1) (58,75,80). Full-service (both primary and elective PCI) laboratories performing <200 total cases annually require additional considerations. Many such low volume laboratories do not have onsite surgery and were developed to provide PPCI services to underserved or geographically-isolated populations; a situation which the 2011 PCI guideline acknowledges may be acceptable. Elective PCI is often performed in these facilities to increase the volume of procedures and thus maintain facility and operator proficiency. There are also some laboratories that provide only PPCI service to similar populations. Such facilities must have stringent systems and process protocols with close monitoring of clinical outcomes and additional strategies that promote adequate operator and catheterization laboratory staff experience through collaborative relationships with larger volume facilities. The continued operation of low-volume laboratories that are not serving isolated or underserved populations should be
questioned and any laboratory that cannot maintain satisfactory outcomes should close. This becomes increasingly relevant in an era of declining procedural volumes and expanded care delivery models for patients with STEMI (83).

2.8.1.2. Relationship of Individual Operator Volume to Procedural Outcome

We identified 9 studies examining the relationship between individual operator caseload and procedural outcomes in the stent era (Online Appendix 2). Of these, 4 studies demonstrated the existence of a relationship between low operator volume and increased adverse outcomes (58,84-86), predominantly CABG, but only 1 showed a modest correlation with in-hospital mortality (86). Notably, the 3 largest reports, each with a study population >100,000 patients, supported the existence of such relationship (58,84,86).

The largest and most contemporary study involved 3,649 physicians (excluding those performing <10 PCIs/year) from the NCDR® CathPCI Registry and included 345,526 PCI procedures performed in 543 hospitals over 4 consecutive quarters ending in July 2009. Using hierarchical logistic regression modeling to adjust for patient demographics, comorbidities, cardiac status, and hospital volume this study compares outcomes including in-hospital mortality of patients treated by operators who performed <75 PCIs/year with those performing ≥75 PCIs/year. Median operator PCI annual volume was 75 PCIs (IQR 38-127) and overall in-hospital mortality was 1.31%. After multivariable adjustment, in-hospital mortality remained significantly higher among physicians performing <75 PCIs/year (OR=1.14; 95% CI: 1.05 to 1.24), noting that the correlation between in-hospital mortality and operator volume was modest (R² = -0.0057), and there was no clear inflection point for a minimal volume threshold (Figure 2). The absolute difference in mortality was 0.3% (86). Lower-volume operators had significantly higher rates of other complications, including bleeding, emergency PCI, and the need for postprocedural CABG surgery. A higher mean length of stay was also found in low volume operator patients. This large NCDR® CathPCI Registry analysis, representing approximately 70%-80% of all PCIs performed in the United States, has several important limitations including: data are limited to only voluntarily participating hospitals and long-term outcome data is not available. These findings were reported at the 2011 AHA Scientific Sessions in Orlando, Florida (86), and the final peer-reviewed publication is not yet available.

An earlier report by McGrath et al. (84) analyzed data from the 1997 Medicare national claims database on 167,208 patients undergoing PCI by 6,534 operators. A significant relationship between operator volume and outcome was found noting a lower risk of post-PCI CABG surgery in patients treated by high-volume operators (>60 PCIs/year); however, there was no observed difference in 30-day mortality (84). Similar findings were obtained by Hannan et al. (58) who analyzed data from 107,713 PCI procedures reported in the New York State Database from 1998 through 2000. Operator volume
thresholds were set at 75 PCIs/year based on the ACCF/AHA recommendations, and compared to higher levels of 100 and 125 procedures/year. There were no differences in risk-adjusted mortality between patients undergoing PCI performed by low- versus high-volume operators for any of the 3 volume thresholds examined (58). However, significant differences for same-day and same-stay CABG surgery were observed for all 3 volume thresholds. For instance, patients undergoing PCI with operators performing <75 PCIs/year had a 65% increase of undergoing same-day CABG surgery and a 55% increase of undergoing same-stay CABG surgery (58). Another study by Moscucci et al. involving 18,504 PCI procedures performed in 14 Michigan hospitals in 2002, demonstrated that patients treated by low-volume operators (<90 PCIs per year) experienced a 63% increase of MACE (a composite of death, MI, stroke or transient ischemic attack, CABG surgery, and repeat PCI) (p< 0.0001) after multivariable adjustment, but not in-hospital mortality, compared to patients treated by operators in the higher-volume quintile. When using the 75 PCIs/year cutoff, no significant differences in adjusted MACE or mortality rates were observed (85).

The writing committee recognizes that the majority of interventional cardiologists in the United States are not achieving the previously-recommended threshold of 75 PCIs annually (87). This may be related to many factors, including but not limited to: (a) the reduction of restenosis related to the widespread use of drug-eluting stents; (b) improved medical therapies and increasing appreciation of the importance of upfront guideline-directed medical management of stable CHD; (c) the presence of more interventional cardiologists and centers in the United States; and (d) the development and implementation and increasing awareness of Appropriate Use Criteria for coronary revascularization (52). We also recognize the increased use of invasive coronary physiological and anatomic assessment (e.g., fractional flow reserve, intravascular ultrasound) by many interventional cardiologists which are usually not counted as PCI procedures however might conceivably influence PCI volume. There is also a shift towards the performance of noncoronary based (structural) cardiac interventions by many experienced high-volume operators.

Overall, it is the opinion of the writing committee that the available evidence does not send a loud signal supporting a consistently strong relationship between operator caseload and mortality (58,84-86). In part, this is a function of the extremely low procedural-related mortality that now exists for PCI. The preponderance of data available is related to clinical outcomes other than mortality and does suggest a possible relationship between operator volume and emergency CABG surgery and other PCI complications. Based on available data and the judgement of the writing committee involving all of these considerations, the writing committee recommends interventional cardiologists perform a minimum of 50 coronary interventional procedures per year (averaged over a 2-year period) to maintain competency. The writing committee acknowledges that this number is established primarily by expert opinion derived from
the interpretation of substantial data from multiple sources (each with inherent limitations). Because of
the limitations of these data, the writing committee believes operators performing <50 PCIs/year should
not be denied privileges or excluded from performing coronary interventions based solely on their
procedural volume. The committee acknowledges that there are low-volume operators who provide
excellent clinical care and achieve excellent outcomes. In instances where operators are performing <50
PCIs annually, the writing committee strongly encourages both institutions and operators to carefully
assess whether their performance is adequate to maintain competence. Other metrics are needed, in
addition to volume and risk-adjusted outcomes which have very wide confidence intervals at low
procedure volumes and thus are difficult to assess accurately. The committee suggests that each facility
develop alternative pathways for the evaluation of low-volume operators. These pathways may be
established and monitored by an independent institutional committee (consisting of physicians and
relevant healthcare personnel) or an external review organization. The writing committee emphasizes that
volume is but 1 of several factors that should be considered when assessing an individual operator’s
competence. Other factors to consider for low-volume operators include (but are not limited to):
performance of additional noncoronary cardiovascular interventional procedures, lifetime experience,
ABIM certification in interventional cardiology, attendance at educational symposiums, CME credits, and
simulation courses.

Although this recommendation focuses on the minimal procedural volume considered acceptable
for maintaining competence, the writing committee believes it is important to evaluate the performance of
all operators. Separate concerns may exist for very high-volume operators. Compliance with suggested
guidelines and appropriateness of procedures are important metrics to consider when evaluating
competency of all operators.

2.8.1.3. Volume and Outcomes Relationship for Primary PCI in Acute MI
PPCI requires several clinical, cognitive, and procedural skills not necessarily involved with performing
elective PCI. Online Appendix 3 summarizes 16 published studies examining the relationship between
operator and institutional volume and outcomes in patients undergoing PPCI. Of those studies, 4 showed
no relationship between volume and mortality (88-91), although the latter (the only U.S. study of all 4
reports) demonstrated shorter door-to-balloon (DTB) time and greater adherence with evidence-based
therapies observed in higher-volume PPCI centers (91). Of the 12 remaining reports, 10 studies (58,92-
100) demonstrated a significant inverse relationship between hospital PPCI volume and in-hospital mortality, while 2 studies (101,102) showed similar relationships relating hospital total PCI volume to mortality. Only 2 studies (97,99) demonstrated a significant inverse relationship between the operator PPCI volume and in-hospital mortality, while 1 report (58) failed to show such a relationship after multivariable adjustment. It is important to note that these relationships were examined nearly exclusively at hospitals with onsite cardiac surgery.

Hannan et al. (58) examined data from the New York State Coronary Angioplasty Reporting System Registry collected between 1998 and 2000, a period when stenting was used in a large majority of STEMI patients. A nonsignificant trend towards increased in-hospital mortality was observed for low-volume operators when compared with high-volume operators both for volume cutoffs of 8 PPCI/year (OR: 1.40; 95% CI: 0.89 to 2.20) and 10 PPCI/year (OR: 1.27; 95% CI: 0.87 to 1.87). Importantly, a significant increase in the odds of in-hospital mortality was observed with lower institutional volume of PPCI, regardless of whether the threshold was set at 36 PPCI/year (OR: 2.01; 95% CI: 1.27 to 3.17), 40 PPCI/year (OR: 1.73; 95% CI: 1.1 to 2.71), or 60 PPCI/year (OR: 1.45; 95% CI: 1.01 to 2.09).

Recently, Srinivas et al. (99) examined the impact of annual hospital and physician volume and their interaction on risk-adjusted mortality in 7,321 patients undergoing PPCI for acute MI from the New York State PCI Registry (2000-2002). High-volume operators performing >10 PPCI/year and those performing >20 PPCI/year demonstrated a 34% and 37% reduction in risk-adjusted mortality, respectively, compared with their low-volume counterparts (p<0.05). High-volume hospitals (>50 PPCI/year) also achieved statistically significant reductions in mortality (adjusted OR: 0.58; 95% CI: 0.38 to 0.88). The thresholds at which the benefit was observed were similar to the ACCF/AHA volume recommendations and, as such, the investigators recommended adherence to current guidelines and the monitoring of PPCI performance by low-volume operators (99). A recent analysis (91) explored the relationship between hospital volume (primary and total PCI volumes) and patient outcomes in the AHA’s Get With the Guidelines–Coronary Artery Disease (GWTG–CAD) National Registry (2001-2007). Hospitals were divided into tertiles of PPCI volume as low (<36 PPCI/year), medium (36 to 70 PPCI/year) and high (>70 PPCI/year). Total PCI volume was similarly calculated, and hospitals were again divided into tertiles based on the ACCF/AHA recommended thresholds as low (<200 PCIs/year), medium (200 to 400 PCIs/year), and high (>400 PCIs/year). A total of 29,513 patients with STEMI were treated with PPCI at 166 hospitals across the United States. Hospital annual PPCI volume ranged between 9 and 225 patients, with a median of 49 (IQR 27-78) patients. Compared with low- and medium-volume centers, high-volume centers had better median DTB times (98 versus 90 versus 88 minutes, respectively; p for trend <0.001) and were more likely to follow evidence-based guidelines at discharge. The
investigators found no significant differences in crude mortality between the PPCI volume groups, even after sequential multivariable adjustment (91). In contrast, patients presenting to low total PCI volume hospitals had a higher crude mortality compared with medium- and high-volume hospitals (3.5% versus 3.3% versus 3.0%, respectively; \(p \) for trend = 0.05), which did not remain statistically significant after multivariable adjustment (91). The importance of the GWTG–CAD study (91) stems from its inclusion of a large patient population and representation of real-world contemporary practices from all U.S. census regions. The lack of mortality benefit, while it stands out in contrast to other reports (58,92-100), does not eliminate volume as an important marker of PPCI quality, especially given the differences in secondary outcomes and quality measures (91).

While a large body of evidence supports the existence of a relationship between hospital volume of PPCI and outcome (Online Appendix 3), only a paucity of studies related total hospital PCI volume to outcome of acute MI (79,102). Spaulding et al. (102) examined the relationship between hospital PCI volume and outcomes after emergency PCI procedures from the CARDIO-ARIF Registry, which included a total of 37,848 total PCIs from 44 centers in the greater Paris area (2001-2002). Emergency PCI was defined as PCI performed for AMI, cardiogenic shock, or successfully resuscitated out-of-hospital cardiac arrest. The investigators used a threshold of 400 PCIs/year to define low- (<400) and high-volume (\(\geq 400 \)) centers. In this relatively contemporary study in the stent era, the investigators found no relationship between hospital PCI volume and in-hospital mortality for non-emergency procedures. However, a clear inverse relationship existed between hospital volume and mortality for emergency PCIs (8.5% versus 6.8%, \(p = 0.028 \)), which persisted after multivariable adjustment (102). Complication rates were higher in low-volume centers in patients undergoing both planned and emergency procedures, even after multivariable adjustment (102). In another contemporary study by Zahn et al. (79), a small but significant inverse volume–outcome relationship existed for in-hospital mortality (using total PCI volume threshold of 325 PCIs/year); however, this relationship was only apparent in high-risk subgroups, such as patients presenting with acute MI. Both of these studies have important implications (79,102), as they reinforced the notion that the volume–outcome relationship, if existent in the contemporary era, is likely to be most apparent among high-risk patients undergoing emergency and PPCI procedures.

Based on the available literature, strong evidence exists for an inverse relationship between hospital PPCI volume, in-hospital mortality (with the exception of the GWTG–CAD study) (91) and other major adverse cardiovascular outcomes. No clear signal relating operator PPCI volume and hospital total PCI volume to acute MI outcomes exists. The writing committee endorses the 2011 ACCF/AHA/SCAI PCI guideline recommendation that PPCI for STEMI be performed by experienced operators who perform more than 11 PPCI procedures per year and ideally these procedures should be performed at
facilities that perform >36 PPCI procedures annually (2). However, the writing committee acknowledges that geographic challenges to timely access for PPCI may exist in some areas. Low-volume centers that only perform PPCI (typically without onsite surgery) and exist to meet critical access needs must demonstrate acceptable outcomes. This can be accomplished through the reliance on stringent systems and process protocols along with close monitoring of clinical outcomes. Such centers enhance their chance of success by an association with larger facilities and the rotation of interventionalists, clinical catheterization lab and hospital support staff at a high-volume PCI center (53).

2.8.1.4. Outcomes Relationship for PCI in Hospitals Without Onsite Cardiac Surgery

Controversy over the performance of PCI without onsite cardiac surgery has existed for a considerable time in the United States although it is more widely accepted in many countries abroad (54,103). After publication of the quantitative review by Keeley et al in 2003, the superiority of PCI over thrombolytic therapy for the treatment of STEMI became widely accepted (104). This acknowledgement encouraged the development of primary PCI programs at hospitals without cardiac surgery in an effort to provide this treatment rapidly to patients with STEMI in their local communities (105). Difficulties sustaining the proficiency of support personnel and operators within a PCI program limited to patients with STEMI were used to support the performance of PCI cases in patients presenting without ST-elevation MI at facilities without onsite cardiac surgery in an attempt to maintain higher PCI volumes and staff expertise (106,107). Despite guideline recommendations in place at the time, the number of PCI facilities without onsite cardiac surgery in the United States continued to grow (108). In 2007 the SCAI published an expert consensus document, which reviewed the topic of PCI without onsite surgery and provided recommendations to assure appropriate patient care in this setting (54). This document acknowledged the reality that as of 2007 primary and elective PCI without onsite surgery was already being performed in 28 states despite the guideline recommendations current at the time.

2.8.1.4.1. The Safety of PCI Without Onsite Cardiac Surgery

As techniques for performing PCI and drug therapies used during PCI continued to improve, the safety of PCI without onsite cardiac surgery has been reevaluated in several recent studies and meta-analyses (33,109-113) (Online Appendix 4). Separate analyses of registry data from Sweden and the United States showed no differences for in-hospital mortality, 30-day mortality, or the need for emergency CABG surgery among hospitals with and without onsite surgery (33,109). Two recent meta-analyses also showed no difference in mortality for primary or non-primary PCI among hospitals with and without onsite surgery and no difference in the need for emergency CABG surgery (110,111). However, in both analyses heterogeneity was observed in the outcomes for non-primary PCI among sites without onsite surgery prompting the authors to make strong recommendations about how such sites should function to
ensure optimal results. Finally, the Cardiovascular Patient Outcomes Research Team (CPORT) Non-
Primary PCI (CPORT-E) trial randomized patients undergoing elective PCI to treatment at hospitals with
and without onsite surgery (113). Within the context of this well-controlled study, elective PCI at
hospitals without onsite surgery was shown to be not inferior to PCI at hospitals with onsite surgery.

Reflecting the continued accumulation of data on the safety of PCI without onsite surgical backup,
the most recent ACCF/AHA/SCAI PCI guideline classified primary PCI without onsite surgery as Class
Iia (Level of Evidence: B) and elective PCI as Class Iib (Level of Evidence: B) indications providing
appropriate planning for program development has been accomplished (2). Elective PCI without onsite
cardiac surgical backup was considered appropriate only when performed by experienced operators with
complication rates and outcomes equivalent or superior to national benchmarks. Accurate assessment of
complication rates and patient outcomes via a regional or national data registry, so that outcomes can be
compared with established benchmarks, is an important quality control component of any PCI program.
Numerous personnel, facility, operator, and structural requirements adapted from the SCAI expert
consensus documents were described (2,54).

2.8.1.4.2. Existing Recommendations for Operator Competency at Hospitals Without
Onsite Cardiac Surgery

Noting that PCI without onsite surgery is more routinely practiced, it is important to emphasize that
almost all safety data comes from well-controlled studies or registries at facilities with a strong
commitment to quality outcomes. Little has been written concerning operator competency requirements
specifically at hospitals without onsite surgery, but it is reasonable to assume that outcomes similar to
those reported in the literature would require facilities and operators to adhere to the same requirements
outlined in the published studies of PCI without onsite surgery. For example, in CPORT-E, operators
were required to meet the requirements for competency set forth in the ACCF/AHA/SCAI guideline
existing at the time of the study (minimum 75 PCIs annually) and facilities were required to have an
annual PCI volume of 200 cases after the first year of operation. Within these studies other factors noted
as contributing to the favorable outcomes in hospitals without onsite surgery included: a) submitting data
to a national repository for benchmarking, b) linkage of such facilities to a tertiary care center for
consultation, c) cross-training of personnel, d) similar processes and structures of care for a patient
undergoing PCI, e) expeditious transfer for emergency CABG surgery and f) use of risk-adjustment tools
for case selection, outcomes analyses and comparison of operator performance (33,112,113). It has also
been shown that patients admitted to PCI centers without onsite surgery have a higher mortality and are
less likely to receive guideline-recommended medications or to receive reperfusion therapy (114).
However, when the analysis was restricted to patients who received PPCI, the mortality difference was
The 2011 ACCF/AHA/SCAI PCI guideline emphasizes that all PCI programs need a robust quality improvement program that routinely reviews quality and outcomes for the entire program and for individual operators. Elements of this Class I recommendation include peer review of complicated cases or cases with poor outcome plus random case reviews and participation in a registry so appropriate benchmarks are established and risk-adjustment can be performed. Board certification and MOC in interventional cardiology is strongly encouraged. Maintenance of certification in interventional cardiology currently requires physicians to document a minimum of 150 interventional cases over the 2 years before expiration of the current certification, completion of self-assessment modules of their medical knowledge, participation in a practice-based quality-improvement activity, and passage of a knowledge-based examination. Operator and hospital volume requirements in the 2011 ACCF/AHA/SCAI PCI guideline were carried forward from the 2005 guideline with the writing committee acknowledging that the volume recommendations were controversial and should have a Level of Evidence C rather than B as in the prior guideline.

The SCAI Expert Consensus Document proposed more rigorous requirements for operators and facilities without onsite surgery to reflect the opinion of the SCAI writing group that a greater experience level is appropriate for PCI in the absence of onsite surgery (54). They recommended that initial operators at a facility without onsite surgery should not begin performing PCI in such facilities until they have a lifetime experience of >500 PCIs as primary operator after completing fellowship. Interventional cardiologists joining those already engaged in PCI without onsite surgery with <500 cases of lifetime experience should be mentored and monitored by qualified physicians until it is determined their skills and judgment are satisfactory and outcomes equivalent or superior to the national benchmarks. Accordingly, this writing committee recommends operators performing PCI without onsite surgery should perform >50 total PCIs per year, including >11 primary PCIs per year. Operators who cannot maintain these case volume recommendations at their primary practice site should maintain privileges and continue to perform PCI procedures at a high-volume institution with onsite surgical backup to meet these annual volume requirements †.

2.8.1.4.3. Volume-Outcome Relationship at Facilities Without Onsite Surgery

As noted in an earlier section, the relationship between both operator and hospital volume and outcomes

† Although the 2011 ACCF/AHA/SCAI PCI guideline includes recommendations regarding operator and institutional volume, it was anticipated that this current writing group tasked specifically with examining volume thresholds would be the primary source and that the 2011 PCI guidelines might be subsequently modified. Therefore, the operator and institutional volume discussion, conclusions, and recommendations in this document supersede the recommendations in the 2011 ACCF/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (2).
at facilities with onsite cardiac surgery is not straightforward and may be inconsistent across low-volume institutions or operators. This is especially problematic since data from the NCDR® shows a predominance of low-volume hospitals are facilities without onsite surgery (33,83). Several strategies have been suggested to ensure optimal quality and outcomes at low-volume facilities without onsite surgery including: a) having both operators and support personnel rotate at a high-volume facility to enhance experience, and b) rigorous quality monitoring program with oversight from a high-volume facility or formal evaluation by an external accreditation organization. Performing adequate peer review may be especially difficult at low-volume facilities with only a few operators. It should be emphasized, however, that the strongest rationale for the development of PCI facilities without onsite surgery was the desire to provide rapid PPCI to patients in their communities. Since 2000, there has been a substantial decline in the incidence of STEMI and there is now greater emphasis on developing systems of care for STEMI patients as promoted in the Mission Lifeline initiative (115,116). All of these factors will further challenge smaller facilities wishing to sustain PCI programs potentially reducing the number of PCIs performed per facility and per operator. Accordingly, the writing committee recommends that an institution without onsite surgery with a volume fewer than 200 procedures annually, unless in a region underserved because of geography, should strongly consider whether or not it should continue to offer this service. This becomes increasingly relevant in an era of declining procedural volumes and expanded institutional capabilities (83).

2.8.1.5. The Interplay Between Operator and Institutional PCI Volume and Outcome

It has been widely acknowledged that institutional experience may modify the volume-outcome relationship at the individual operator level. In 1990, Ryan et al. (65) recognized that ‘operator skill and judgment are greatly influenced by personal experience and by the environment in which the operator practices’.

Hannan et al. (58) demonstrated that, compared with patients undergoing PCI by high-volume operators (≥75/year) in high-volume hospitals (≥400/year), patients undergoing PCI by low-volume operators (<75/year) in low-volume hospitals (<400/year) had significantly higher rates of in-hospital mortality (OR: 5.92; 95% CI: 3.25 to 10.97), same-day CABG (OR: 4.02; 95% CI: 1.04 to 15.57), and same-stay CABG (OR: 3.19; 95% CI: 1.51 to 6.77). A comparison of the size of the effect estimates showed that the increase in adverse outcomes became additive when PCIs are performed by low-volume operators in low-volume hospitals (58). A similar institutional-operator volume relationship (117) to outcomes was reported in 452,404 patients undergoing PCI in Florida and New York between 1996 and 2001. Operators performing ≥75 PCIs at hospitals performing >400 PCIs had the lowest occurrence of the overall composite outcome (in-hospital mortality and emergency CABG surgery) in each year (117).
Srinivas et al. (99) demonstrated a significant interaction between hospital and physician volume with respect to adjusted mortality (p=0.02) among acute MI patients undergoing PPCI from the New York State PCI Registry (2000-2002). PPCI by high-volume physicians (>10 PPCIs/year) in high-volume hospitals (>50 PPCIs/year) was associated with the lowest risk-adjusted mortality, followed by high-volume physicians in low-volume hospitals, low-volume physicians in high-volume hospitals, and finally, low-volume physicians in low-volume hospitals.

2.8.1.6. Limitations of the Existing Evidence

The majority of evidence related to volume-outcome relationship is derived from retrospective administrative data, observational studies, or large registry data; all of which have shortcomings (Online Appendices 1-3). Many of these studies used administrative data to analyze volume-outcome relations. Incomplete reporting of comorbidities is an important limitation of administrative data (73,76). A comparison of administrative versus clinical data in patients found that the former failed to identify more than half of patients with a prognostically-important condition identified by the clinical information system (118). Administrative data may also be confounded by miscoding, including increased coding of comorbidities to raise reimbursement (118). Additional recognized limitations of specific databases exist. When using the Medicare data, for example, one needs to extrapolate the total number of procedures from the number of Medicare procedures (68,70,71,84). In contrast, the GWTG initiative is a quality improvement registry and not meant to examine the volume-outcome relationships (91). Data are submitted voluntarily to the GWTG–CAD database by participating hospitals and collected by medical chart review, and are thus dependent on the accuracy and completeness of abstraction (91). The New York Registry (58,97,99,101,117) is characterized by mandatory participation and a comprehensive auditing process, which ensures accuracy and minimizes self-reporting bias. However, because of New York’s certificate of need system, the number of low-volume hospitals in the registry is limited, so it is more difficult to study their performance. Data on timeliness of reperfusion are also lacking and the generalizability of data from a single state registry remains questionable. The latter is not an issue for the Nationwide Inpatient Sample database, which represents a 20% stratified sample of community hospitals in the United States. However, the Nationwide Inpatient Sample database does not capture long-term mortality and clinical outcomes, and has no information on the severity of the primary diagnosis or comorbid conditions, which precludes robust risk adjustment analyses (78).

Overall, data from these studies should be viewed in the context of their retrospective observational nature. They identify only associations rather than causality. In addition, despite the use of intricate multivariable analyses in the various studies, no amount of adjustment in regression models can completely separate the greater illness severity from worse outcomes, and some portion of the
relationship may still be due to selection bias. Referral bias is also an important confounder, with low-volume hospitals having disproportionately more patients with acute coronary syndrome and a lower percentage of stable coronary artery disease patients. The National Surgical Quality Improvement Program studies underscored the limitations of claims data and administrative databases in the provision of adequate risk-adjustment models that are crucial for volume-outcome studies (67).

2.8.2. Volume as a Surrogate for Quality

2.8.2.1. Plausible Explanations for the Volume-Outcome Relationship

Various factors can explain the relationship between PCI volume and outcome. It is possible that PCI volume is correlated with enhanced care processes, including the implementation of specific clinical practice guidelines for patients undergoing PCI or familiarity with treating its complications and emergencies. The influence of the learning effect among operators (high-volume operators developing more experience) is also important. High-volume hospitals are likely to have high-volume operators and consequently experience better outcomes. High-volume hospitals may also be accepting higher-risk patients with more complex anatomy which may adversely affect outcomes.

2.8.2.2. Lifetime PCI Experience Relationship to Quality

Historically, volume has been used as a surrogate for quality because it was most easily measureable. However, we feel it is important to note that volume is only 1 of many factors affecting the outcome and quality of PCI. Many studies have emphasized that the quality of systems of care are more important than volume in determining the overall quality of procedural care at an institution. Volume should not be substituted for prospectively monitored and properly risk-adjusted outcomes (67); however, evaluating competency is only feasible when an operator or an institution performs an adequate number of cases to assess risk-adjusted outcomes. The 2011 ACCF/AHA/SCAI PCI guideline emphasized that risk-adjusted outcomes remain preferable to institutional and individual operator volumes as quality measures (2), outlining the importance to shift the paradigm from examining volume (a surrogate of outcome) to direct outcome assessment. Lifetime operator experience and appropriateness of procedure are also important metrics. One small study from Japan (7 operators performing PCI on 121 STEMI patients) demonstrated that junior cardiologists who performed >50 elective PCIs can perform PPCI with similar outcomes to experienced operators (>5 years of experience and board certified). However, the impact of lifetime operator experience needs to be explored in larger studies, especially in our current environment when many experienced operators are increasingly performing structural interventions at the expense of lower coronary interventional volume and older experienced operators often are required to take less on-call time than younger members of their group. Periodic case review to ascertain appropriateness and quality of PCI procedures is also important (refer to section 2.10.5.1). Low-risk PCIs performed for the wrong
indication are likely to have favorable outcomes but still reflect poor PCI quality because of inappropriateness of selection. Variables affecting PCI outcome are summarized in Table 4 (119).

2.8.2.3. Caution Against Preoccupation with Specific Volume Recommendations

The 2011 ACCF/AHA/SCAI PCI guideline recommended that PCI should be performed by operators with an acceptable annual volume (>75 procedures) at high-volume centers (>400 procedures) with onsite cardiac surgery (2). These volume recommendations were carried over from the 2005 ACCF/AHA/SCAI PCI guideline (25) but downgraded to a Level of Evidence C, recognizing that they represent expert opinion and lack strong and consistent evidence from the literature. The 2011 PCI guidelines also encouraged the ACCF/AHA/SCAI Clinical Competence Statement on Cardiac Intervventional Procedures writing committee to review this issue (2).

It is the opinion of our writing committee that the public, policy makers, and payors should not overemphasize specific volume recommendations recognizing that this is just 1 of many factors that may be related to clinical outcomes. Notably, 1 report found that <1/3 of physicians performed >10 PPCIs/year (99), while another showed that >1/3 of U.S. hospitals did not achieve the 36 PPCIs/year threshold (91). The Leapfrog Group initially focused on minimum volume standards to measure quality and encouraged their members to contract with hospitals that meet minimum volume thresholds (120). However, in 2003, they expanded their measures to include documented adherence to certain clinical care processes and direct outcomes measurement (i.e., risk-adjusted mortality) (121). Of note, the 2010 European Society of Cardiology Guidelines on Myocardial Revascularization avoided giving specific recommendations on operator or hospital minimum volumes (122).

The relative benefit of more favorable outcomes at facilities with higher volumes must be weighed against the potential decline in access resulting from minimum volume standards or regionalization of care. Although regionalization of care may ensure better outcomes (especially in the early stages of a medical intervention), it may also limit healthcare access and may therefore have negative consequences for patients in less populated areas requiring emergency PCI. After reviewing the preponderance of evidence, the writing committee could not identify definite cut-offs for procedural volume above or below which operators perform well or poorly. We recognize that advancements in technology and periprocedural care may result in progressive improvement in PCI outcomes and may at least partially offset the adverse institution volume–outcome relationship. A study evaluating temporal trends in the volume–outcome relationship in California found that over time the disparity in outcomes between low- and high-volume hospitals had narrowed (73). These findings were, however, disputed by others who found no evidence of attenuation over time of the volume–outcome relationship (82).
Our writing committee recognizes that there are institutions with low volumes that appear to achieve very acceptable results just as there are low-volume operators with better than expected outcomes and a few high-volume operators with worse outcomes (85). Because of the likelihood of statistical imprecision when examining outcomes of low-volume operators, other metrics are needed in addition to volume and risk-adjusted outcomes. It is also important to account for operators’ lifetime experiences: many experienced operators are currently performing low-volume coronary interventional work and shifting to structural work or larger portion of administrative duties, and these should be distinguished from ‘inexperienced’ low-volume operators. Institutions are encouraged to perform periodic peer review of random interventional cases for all operators. Importantly, low-volume operators should undergo more scrutinized case review. Participation in regional and national registries such as the NCDR® CathPCI Registry is strongly recommended. Such registries should provide timely data that are risk-adjusted, robust, audited, and benchmarked so that clinicians, hospitals, regulatory bodies and other stakeholders can accurately assess the quality of care delivered. Additional emphasis on educational symposiums, CME credits, and simulation courses may provide other venues to enhance quality for all operators. Currently several simulation companies have products designed to present coronary, peripheral, carotid, and structural cardiac cases that can be used for teaching or evaluation of cognitive and procedural skills. The use of these simulators has mostly been in the area of fellow education, MOC modules, or industry has used them to train practitioners to use new or less frequently used devices. Supported by accumulating evidence, many educators advocate the use of simulator-based training as a means to complement conventional training in interventional cardiology (123-126). There are emerging data suggesting that simulators might serve to identify low-ability operators, however the writing committee acknowledges current technological and access limitations currently exist presenting challenges to the widespread use of simulation (127).

2.8.3. Conclusions

In the current era, volume-outcome relationships are not as robust as those that were shown when balloon angioplasty was the only treatment modality. More recent data supports a modest volume-outcome relationship for variables other than mortality, but these data have limitations and are not consistent across all studies. An institutional volume threshold <200 PCIs/annually appears to be consistently associated with worse outcomes, but above this level there was no relationship between even higher annual volumes and improved outcomes. Accordingly, the writing committee recommends a minimum institutional volume threshold of 200 PCIs per year. There is less evidence to support a threshold for individual operator volume for both elective and primary PCI. It is the writing committee’s recommendation that interventional cardiologists perform a minimum of 50 PCI procedures per year (averaged over a 2-year
period) to maintain competency. The writing committee cautions against focusing on specific volume recommendations, and emphasizes that procedural volume is 1 of several variables to consider when determining operator competency. Volume is not a surrogate for quality and should not be substituted for risk-adjusted outcomes and other measures of quality. Periodic case review and ascertainment of the appropriateness of procedures should be performed for all operators and at all institutions. Our writing committee strongly encourages the participation in a local or national registry, such as the NCDR® CathPCI Registry, which can help measure performance, assess appropriateness of procedures, and promote continuous quality improvement.
Table 4. Possible Predictors of Clinical Outcomes Following PCI

<table>
<thead>
<tr>
<th>Case selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-specific risk factors</td>
</tr>
<tr>
<td>Institutional volume: sharing of techniques, more experience in high-risk cases</td>
</tr>
<tr>
<td>Operator volume: annual, lifetime</td>
</tr>
<tr>
<td>Appropriateness criteria and indication level</td>
</tr>
<tr>
<td>High-risk case selection may be related to higher case volume</td>
</tr>
<tr>
<td>Location of hospital: rural/suburban, community, academic teaching</td>
</tr>
<tr>
<td>Board certification: cognitive learning, evidence-based practice</td>
</tr>
</tbody>
</table>

PCI indicates percutaneous coronary intervention.
Reprinted with permission from Klein et al. (128).
Figure 1. Results of Meta-analysis of Studies Investigating the Effect of Centre Volume on In-hospital Mortality after PCI.

CI indicates confidence interval and PCI, percutaneous coronary intervention.

Reprinted with permission from Post et al. (82).
Figure 2. Scatter Plot of PCI Volume Versus In-hospital Mortality

PCI indicates percutaneous coronary intervention

Reprinted with permission from Minges et al. (86).
2.9. Radial Access

Radial coronary angiography was first introduced by Lucian Campeau in 1989 (129), followed by radial PCI first performed by Ferdinand Kiemeneij in 1992 (130). Over the last 2 decades, the use of radial coronary angiography and intervention has steadily increased across Europe, Asia, and Canada (131-133). The penetration of the radial approach into the United States, however, has been slow and was estimated at 2% in 2008 (134) but continues to rise (135). The slow adoption of this technique in the United States has been due to a prior lack of formal training during fellowships as well as the lack of well-defined training pathways for physicians in practice.

Use of the radial artery for diagnostic and interventional coronary procedures has been compared with the femoral approach in both observational studies and randomized trials and has demonstrated significant reductions in bleeding and access site complications (131-134,136,137). The most compelling evidence supporting the advantages of radial access comes from the RIVAL (Radial versus Femoral Access for Coronary Angiography and Intervention in Patients with Acute Coronary Syndromes) trial (136) which compared outcomes in 7,021 patients randomized to either radial (n=3,507) or femoral access (n=3,514). While the primary endpoint (e.g., death, MI, bleeding, access site complications) was negative, this trial demonstrated that in certain situations (e.g., patients presenting with STEMI) a radial approach may be associated with significant reduction in access site complications and mortality versus a femoral access approach (Figure 3). Furthermore, this study supports prior observations (137,138) reporting a patient preference for the radial approach noting less discomfort and greater postprocedural mobility.

The use of a transradial approach, however, is associated with a steeper learning curve (139), potential increased radiation exposure and radial artery occlusion that can be as high as 30% if best practices are not followed (140). Patient selection and preprocedural evaluation are critical components of assuring a successful transradial procedure. The ideal patient characteristics include: 1) hemodynamic stability, 2) age <70 years, 3) no history of prior ipsilateral brachial or transradial procedure, and 4) a palpable radial artery with a strong pulse and presence of a normal Barbeau test (141). Relative contraindications to the radial approach include an absent radial pulse, an abnormal Barbeau test, severe vasospastic conditions, planned or existing arteriovenous shunt for dialysis, and the potential use of the radial artery as a conduit for aortocoronary bypass.

The Barbeau test evaluates the patency of the ulnopalmar arterial arches by recording both pulse oximetry and plethysmography during radial artery compression. An oximetric probe is placed on the first finger or thumb of the hand where access is to be obtained. When the radial and ulnar arteries are
Harold, JG et al.
ACCF/AHA/SCAI Clinical Competence Statement

occluded, the waveform should be dampened and no oxygen saturation number can be recorded. The Barbeau test is more sensitive than the Allen’s or modified Allen’s tests, and classifies patients into 4 groups. If the waveform remains dampened after release of the compressed ulnar artery, the test is considered abnormal (type D) and the radial artery should not be punctured. Type D pattern usually occurs in only 1.5% of patients.

2.9.1. Training

Current interventional cardiology training program guidelines provide no specific recommendations regarding training for transradial approach. The ACCF Core Cardiology Training Symposium (COCATS) guidelines state that one needs the ability to “perform vascular access from the femoral, radial, or brachial route” (142). Also, the current ACGME Program Requirements for Graduate Medical Education in Interventional Cardiology states that “Fellows must have formal instruction, clinical experience, and must demonstrate competence in the performance of coronary interventions [via] femoral and brachial/radial cannulation of normal and abnormally-located coronary ostia.”

Ideally, interventional fellows would graduate with competency in radial and femoral procedures and practicing physicians would have a well-defined pathway to gain these skills. However, this has not come to fruition in the United States due to the small number of radial procedures and the limited number of interventional cardiologists skilled in this technique. Training in radial coronary angiography and interventions should include acquisition of knowledge and competence in the following:

1. Anatomy of the upper extremity vasculature
2. Patient evaluation and selection for transradial approach
3. Selection of right or left transradial approach
4. Patient preparation and room set-up
5. Radial artery access
6. Arterial vasodilators and antithrombotic pharmacology
7. Catheter selection and manipulation for diagnostic and interventional procedures
8. Trouble-shooting during transradial approach
9. Prevention, recognition, and management of complications
10. Sheath removal and access site management

For physicians in practice, the number of cases required for competency will be based on the expertise of the operator. The learning curve for any new procedure partially depends on the cumulative experience of the operator in catheter-based interventions. Fellows in training will need prospectively defined curricula that cover the spectrum of cognitive and technical skills required to master this approach.
2.9.2. Competency

Currently, there are no standard guidelines that define competency in radial angiography and interventions. The SCAI subcommittee for transradial angiography and intervention proposed the following criteria (141):

• Level 1 competency: Able to perform simple diagnostic cases on patients with favorable upper limb anatomy (large men)

• Level 2 competency: Able to perform simple diagnostic and interventional procedures on patients with more challenging upper limb anatomy (elective single vessel PCI; bypass grafts, small women, radial and subclavian loops)

• Level 3 competency: Able to perform complex interventional procedures even with challenging limb anatomy (chronic total occlusions, multivessel, AMI)

At the present time, as such pathways develop, the outcomes of PCI procedures via the radial approach should be assessed in a similar manner to that of other PCI procedures, with attention to bleeding, access site complications, and overall outcomes. These procedures should be included in the overall volume statistics for the operator, and institutions or operators may wish to separately evaluate operator or laboratory performance based upon route of access. Further expansion of specialized training courses for interventional cardiologists already in practice wanting to acquire competencies in radial coronary angiography and PCI should be provided to meet current needs.
Figure 3. Forest Plot of the Updated Meta-Analysis (RIVAL Trial)

OR indicates odds ratio; CABG, coronary artery bypass graft surgery; MI, myocardial infarction, and RIVAL, Radial vs. Femoral Access for Coronary Angiography and Intervention in Patients with Acute Coronary Syndromes trial.

*Defined as centers with radial as the preferred route or known expert centers for pre-RIVAL, and centers with the highest tertile radial intervention center volume for RIVAL.

Reprinted with permission from Jolly et al. (136).
2.10. Quality Assurance

2.10.1. Definition of Quality in PCI

Quality in PCI includes selecting appropriate patients for the procedure, achieving risk-adjusted outcomes that are comparable to national benchmark standards (in terms of procedural success and adverse event rates), using reasonable resources, achieving quality procedure execution (including the use of evidence-based medical therapies) and providing an acceptable patient experience (143). To achieve optimal quality and outcomes in PCI, including acceptable angiographic, procedural, and clinical success rates, it is necessary that operators and the supporting institution be appropriately skilled and experienced, collect data to allow quality analysis, and have established appropriate systems of care.

2.10.2. Institutional Requirement for a Quality Assurance Program

In the United States, responsibility for quality assurance is vested in the health care institution that is responsible to the public to ensure that patient care conducted under its jurisdiction is of acceptable quality. Quality assurance should include continuous quality assessment and improvement (QI) processes, and should be conducted at the levels of the entire program and the individual operator.

The writing committee supports the recommendation of the 2011 ACCF/AHA/SCAI PCI guideline that every PCI program should operate a quality improvement program that routinely 1) reviews quality and outcomes of the entire program; 2) reviews results of individual operators; 3) includes risk adjustment; 4) provides peer review of difficult or complicated cases; and 5) performs random case reviews (2). Each institution that provides PCI services must establish an ongoing mechanism for valid and continuous peer review of its quality and outcomes. The program should provide an opportunity for interventional cardiologists and all involved physicians, including members of an integrated heart team, to review its overall results on a regular basis, and receive periodic feedback to enhance deficiencies in PCI care. The review process should tabulate the outcomes achieved both by individual operators and the overall program, and compare them to national benchmark standards with appropriate risk adjustment. The review process should also assess the appropriateness of the interventional procedures, and examine other procedural variables pertinent to quality execution of the procedure, periprocedural management, and resource utilization. Valid quality assessment requires that the institution maintain meticulous and confidential records that include patients’ demographics and clinical characteristics necessary to assess these measures and conduct risk adjustment in a transparent manner.

An independent and dedicated committee should be established and ideally include both physicians and relevant health care personnel in a cooperative effort minimizing any conflict of interest. Interventional cardiologists are best suited to perform the primary role in evaluating PCI quality and
leading the quality assurance program. The process should be instituted with the support of hospital
administrators who can help provide resources for registry participation, conduct analyses, and support
other aspects of the QI process. The hospital risk management department, responsible for investigating
reported events and government-mandated quality indicators, should work in cooperation with the
physician-led quality assurance program. Use of the data for non-QI purposes (e.g., marketing strategies,
improving referral) should be strongly discouraged. Programmatic deficiencies, in particular, should be
identified with the involvement of hospital risk management, when appropriate.

The institution should also ensure that all operators are properly trained and certified (including
MOC) and possess the cognitive knowledge and technical skills required to perform PCI (144).

2.10.3. Complexity of Determination of PCI Quality

2.10.3.1. Identification of PCI Quality Indicators

Components of an optimal quality assurance program require that several outcome and process
measures are routinely and timely collected and analyzed. A dedicated database must be established with
hospital support and should include explicitly-defined quality indicators that reflect patient outcomes and
processes of care. Table 5 provides an example of core PCI outcomes and measures that every quality
assurance program is encouraged to record and submit to national or regional databases. The QI process
can be best implemented by incorporating clinical practice guidelines and appropriateness criteria for
coronary revascularization (2,52), as they have been shown to improve clinical outcomes (59,145,146).

2.10.3.2. Role of Risk Adjustment in Assessing Quality

An adverse event rate that is not appropriately risk-adjusted has limited value. Data compiled from large
registries of PCI procedures have generated multivariable risk adjustment models for mortality and other
adverse events. Most of these models are based on logistic regression analyses of in-hospital events
(predominantly mortality) using a large number of prospectively-collected variables. Notably, many of
these models were derived from earlier patients’ cohorts, and are outdated in the current era of rapidly
evolving technology and medical therapy. Contemporary PCI risk scores and predictive models are
summarized in Online Appendix 5 (31,147-153). Sufficient resources must be available to adequately
measure baseline patient risk permitting valid risk-adjustment of outcomes and determining
appropriateness of the intervention.

2.10.3.3. National Benchmarking

National benchmarking is a means to compare a physician’s clinical practice and patient outcomes against
his/her peers, and is a valuable means to understand high variances in low incidence adverse events (154).
Benchmarking requires standardized collection of clinical and procedural data for PCI using identical
elements that are entered into a single electronic repository. This allows regular comparison of risk-adjusted outcomes and complications with national standards. A complete and accurate comprehension of clinical results requires benchmarking of risk-adjusted outcomes to account for differences in patient characteristics and avoid self-reporting bias (155). Appropriate short-term follow-up should also be arranged prior to discharge, as 30-day outcomes have become increasingly required for reimbursement purposes.

The writing committee of the current Clinical Competence Statement echoes the 2011 ACCF/AHA/SCAI PCI guideline in encouraging the participation in a recognized national quality database. Registries such as the ACCF NCDR® CathPCI Registry (156,157) which began in 1998, are designed to standardize reporting of catheterization laboratory outcomes. These types of clinical registries offer the opportunity to have a comprehensive national reporting system that fulfills the goals of assessing and benchmarking quality and outcomes. They can also be utilized to measure performance and utilization rates, promote continuous quality improvement, conduct post-market drug and device surveillance, assess appropriateness of procedures, and track patient safety (154). We look forward to the expansion of currently available databases to better capture important safety, longer-term outcome, quality of life, and resource utilization measurements.

2.10.3.4. Other Challenges in Determining Quality
Given the complexity of case selection and procedure conduct, quality is difficult to measure in PCI and is not determined solely by adverse event rates even when properly risk-adjusted. Notably, procedural volume is a weak and inconsistent measure of quality, and it should not be used alone as a quality indicator. In addition, only short-term outcomes (such as in-hospital mortality) are usually used as the benchmark for risk-adjusted outcomes, and long-term outcomes (including repeat revascularization, recurrent MI, death, and re-hospitalization rates) are often underutilized. Accurate assessment of quality is more problematic for low-volume operators and institutions because of small expected absolute event rates and issues of statistical imprecision. Thus, particularly in low-volume circumstances, quality may be better assessed by an intensive case-review process. Case review also has merits in very high-volume situations as it can identify subtleties of case selection and procedure conduct that may not be reflected in pooled statistical data. It is the opinion of the writing committee that all operators should undergo periodic peer review, with more intensive review process for low-volume operators. Although performance of very high-volume operators is more easily monitored using risk-adjusted outcomes models with comparison to national benchmarks, these operators should also be reviewed for the appropriateness of procedures and indications criteria to assure the clinical necessity of these procedures. Finally, the possibility of conflicts of interest among competing physicians exists. It is therefore strongly
advised that a formal method of oversight for perceived conflicts of interest among peer reviewers be used and carefully scrutinized.

2.10.4. Requirement for Institutional Resources and Support

A high-quality PCI program requires appropriately trained, experienced, and skilled operators. However, the operator does not work in a vacuum, but rather needs a well-maintained high-quality cardiac catheterization facility to practice effectively. In addition, the operator depends on a multidisciplinary institutional infrastructure for support and response to emergencies, including adequate cardiothoracic surgical support (onsite or with a pre-defined strategy for off-site surgical back up). System ‘stress test’ drills to assess logistics flow capabilities of both the referring and receiving centers can help refine a well-coordinated emergent transfer. Therefore, to provide quality PCI services, the institution must ensure that its catheterization facility is properly equipped and managed, and that all of its necessary support services, including data collection, are of high quality and are readily available.

Educational activities such as cardiac catheterization and quality improvement conferences should be encouraged by the institution and should be held routinely. Presentation of clinical and technically-challenging cases, including those with complications and unexpected developments during the conduct of a PCI along with appropriateness reviews, is important. Advances in current communication technologies such as video conferencing or simulcast case reviews, can facilitate this process. It is important to appreciate that the separation of peer review from more traditional teaching activities is most appropriate for optimal quality assurance.

2.10.5. Quality Assessment and Implementation Processes

Quality assessment is a complex process that includes more than a mere tabulation of success and complication rates. The PCI quality assurance program should be comprehensive and evaluate multiple patient subsets, so as to promote both individual physician and system-wide quality improvement.

The core of most PCI quality assurance programs should include: (a) the collection of clinically-relevant data, which contain variables that allow assessment of clinical processes, performance, and outcomes; (b) feedback of this performance and outcomes data to clinicians, ideally with risk-adjustment and benchmarking of the data; and (c) implementation of appropriate interventions to promote reduction in inefficient variation in care while simultaneously improving performance (158). PCI quality assurance must include an ongoing, peer review assessment of the clinical proficiency of each operator including random case review, realistic identification of programmatic and individual operator strengths and weaknesses, and comparison of individual and aggregate outcomes against national standards and benchmark databases. Components of quality in coronary interventional procedures include: (a)
appropriateness of case selection; (b) quality of procedural execution; (c) proper response to intra-procedural problems; (d) accurate assessment of procedural outcome both short- and long-term; and (e) appropriateness of periprocedural management. SCAI recently published a report to establish the standard by which interventional program quality should be measured (128). Quality includes the ability of an interventional cardiologist to provide safe and efficient care to appropriately selected patients, and the expertise to treat a wide range of coronary pathology in these patients.

2.10.5.1. The Peer Review Process
The quality assessment process should also conduct random and detailed reviews of both cases that have adverse outcomes, to determine the causes of the adverse events, and of uncomplicated cases, in order to judge case selection appropriateness and procedural execution quality. These reviews should be conducted by recognized, experienced, unbiased interventional cardiologists, drawn either from within the institution or externally. Noninvasive cardiologists may also participate in the review committees, especially when it comes to assessing procedural appropriateness. A timely and periodically-conducted review process is essential as the reviewers should provide continuous feedback to the institutions and operators to enhance the care process. Review of cine-angiography films should be undertaken to address technical issues. External review represents a second layer of unbiased review of the interventional program. The Accreditation for Cardiovascular Excellence (ACE), initially created by the SCAI in 2010 and cosponsored by the ACCF, is 1 example of an external peer review body, which offers formal, objective, and independent evaluation and monitoring to PCI facilities to ensure that they meet the highest possible standards for patient care and safety. Other forms of external review options exist and individual institutions will need to determine the appropriate external review option for its particular clinical needs, should that be desired. Confidential and constructive feedback of performance and outcomes data should be given to clinicians to promote changes in practice and improve performance (158).

2.10.5.2. Methods of Remediation
When the continuous quality improvement process identifies a systemic problem that requires remediation, the quality assurance committee must investigate the root cause and devise a solution. A formalized plan and implementation strategy (including continued reassessment) should be proposed, and ongoing modification may be required to reach the target result. Recommendations should be based on a comprehensive knowledge of the issue and input from all appropriate stakeholders. When concerns with operator performance arise, remediation should be implemented in a stepwise fashion. Remediation methods may start with an initial discussion with the operator, followed by a non-punitive action plan with appropriate and constructive feedback, such as proctoring a number of cases by the lab director or an experienced operator, as well as additional CME requirements. If this is unsuccessful or the operator is
uncooperative with the plan of remediation, then the next steps may include referral to an external agency or internal hospital committee which may result in penalties or sanctions for the operator, and possibly revocation of the operator’s privileges.

2.10.5.3. Confidentiality
The Federal Health Care Improvement Act of 1986 recognized the importance of quality assurance programs and the importance of protecting participants and their deliberations. Protecting patient safety is most important in the quality assurance process. The committee must behave equitably and transparently to ensure fairness to the operator, quality for the patient, and credibility for the committee. Outcomes must be presented while maintaining absolute confidentiality of the operators. Use of confidential information to target an individual physician should not be allowed.

2.10.6. Conclusions
The cornerstone of quality assurance monitoring is the transparent reporting and continued assessment of procedural outcome data including adverse events. Equally important components include establishing criteria for assessing procedure appropriateness and applying proper risk adjustment to interpret adverse event rates. A quality interventional program performs appropriately-selected procedures while achieving risk-adjusted outcomes that are favorably comparable to national benchmark standards. There has been considerable controversy surrounding the efforts to define standards and methodologies for conducting quality assurance. An objective, physician-led process that includes appropriate evaluation and corrective action plans and is organized to assure a fair and impartial review of performance, provides a reasonable level of assurance that quality is being accurately assessed and promoted. An effective process should also include random case review, develop critical pathways, and accomplish and document positive changes in practice.
Table 5. PCI Outcomes and Adverse Events

<table>
<thead>
<tr>
<th>MAJOR OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morality (in-hospital, 30 day)</td>
</tr>
<tr>
<td>Unplanned CABG surgery (same day, same stay: urgent vs. elective)</td>
</tr>
<tr>
<td>Stroke, TIA or other neurological events</td>
</tr>
<tr>
<td>Myocardial infarction* or ischemia</td>
</tr>
<tr>
<td>Arrhythmias requiring treatment</td>
</tr>
<tr>
<td>Cardiac arrest in the cardiac catheterization lab</td>
</tr>
<tr>
<td>Hemodynamic instability requiring therapy</td>
</tr>
<tr>
<td>Major contrast reaction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROCEDURAL ADVERSE EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary</td>
</tr>
<tr>
<td>Abrupt closure requiring specific therapy</td>
</tr>
<tr>
<td>Distal embolization / no reflow</td>
</tr>
<tr>
<td>Coronary perforation</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
</tr>
<tr>
<td>Stent thrombosis</td>
</tr>
<tr>
<td>Other AEs (e.g., stent loss, retained foreign body, guidewire fracture)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systemic/Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast-induced nephropathy/ new requirement for dialysis</td>
</tr>
<tr>
<td>Excess radiation dose (fluoroscopy time/dose)</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
</tr>
<tr>
<td>Vascular site complications</td>
</tr>
<tr>
<td>Major drop in hemoglobin (>3.0 g/l) or requirement for blood transfusion</td>
</tr>
<tr>
<td>Major bleeding</td>
</tr>
<tr>
<td>Access site vascular injury</td>
</tr>
<tr>
<td>Retroperitoneal hemorrhage</td>
</tr>
<tr>
<td>Arterial access vessel occlusion or dissection</td>
</tr>
<tr>
<td>Access site infection</td>
</tr>
<tr>
<td>DVT/pulmonary embolism</td>
</tr>
<tr>
<td>Other AEs (e.g., stent loss– peripheral)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDITIONAL MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door-to-balloon time in STEMI</td>
</tr>
<tr>
<td>Wrong patient or procedure</td>
</tr>
</tbody>
</table>

AEs indicates adverse events; CABG, coronary artery bypass graft surgery; DVT, deep vein thrombosis; STEMI, ST-segment elevation myocardial infarction; and TIA, transient ischemic attack

* Universal Definition of Myocardial Infarction should be employed

Adapted with permission from Klein et al. (128).
2.11. Summary of Key Recommendations for PCI

Physical Facility and Institutional Requirements *(see Section 2.5.1.)*

Physical Facility Requirements:
- The facility must provide the necessary radiologic, monitoring, and adjunctive patient support equipment to enable operators to perform in the safest and most effective environment.
- The real-time fluoroscopic and acquired image quality must be optimal to facilitate accurate catheter and device placement and facilitate the correct assessment of procedural results.
- Physiologic monitoring equipment must provide continuous, accurate information about the patient’s condition.
- Access to other diagnostic modalities such as intravascular ultrasound and fractional flow reserve should be available.
- Hemodynamic support devices such as intra-aortic balloon pumps and percutaneous ventricular assist devices should be available in institutions routinely performing high-risk PCI.
- These requisite support equipment must be available and in good operating order to respond to emergency situations.

Institutional Requirements:
- The interventional laboratory must have an extensive support system of specifically-trained laboratory personnel. Cardiothoracic surgical, respiratory, and anesthesia services should be available to respond to emergency situations in order to minimize detrimental outcomes.
- The institution should have systems for credentialing, governance, data gathering, and quality assessment. Prospective, unbiased collection of key data elements on all patients and consistent timely feedback of results to providers brings important quality control to the entire interventional program and is critical to assessing and meeting appropriate use criteria for coronary revascularization.
- The writing committee endorses the ACCF/AHA/SCAI PCI guideline recommendation that:
 - Primary PCI is reasonable in hospitals without onsite cardiac surgery, provided that appropriate planning for program development has been accomplished (Class IIa).
 - Elective PCI might be considered in hospitals without onsite cardiac surgery, provided that appropriate planning for program development has been accomplished and rigorous clinical and angiographic criteria are used for proper patient selection (Class IIb).
 - Primary or elective PCI should not be performed in hospitals without onsite cardiac surgery capabilities without a proven plan for rapid transport to a cardiac surgery operating room in a nearby hospital or without hemodynamic support capability for transfer (Class III).
- System ‘stress test’ drills to assess logistics flow capabilities of both the referring and receiving centers can help refine a well-coordinated emergent transfer.

Components of Operator Competence *(see Section 2.7)*
- See Table 3 for the components of operator competence for PCI utilizing the ACGME core competency structure pertaining to medical knowledge; patient care and procedures; practice-based learning; systems-based practice; interpersonal and communication skills; and professionalism.

Maintenance of Quality
Institutional (see Section 2.8.1.1)

- Full service laboratories (both primary and elective PCI, with and without onsite cardiac surgery) performing <200 cases annually must have stringent systems and process protocols with close monitoring of clinical outcomes and additional strategies that promote adequate operator and catheterization laboratory staff experience through collaborative relationships with larger volume facilities. The continued operation of laboratories performing <200 procedures annually that are not serving isolated or underserved populations should be questioned and any laboratory that cannot maintain satisfactory outcomes should close.

Individual Operator (see Section 2.8.1.2)

- The individual operator level volume is 1 of several factors that should be considered in assessing operator competence including lifetime experience, institutional volume, individual operator's other cardiovascular interventions, and quality assessment of the operator's ongoing performance.
- Interventional cardiologists should perform a minimum of 50 coronary interventional procedures per year (averaged over a 2-year period) to maintain competency.
- Facilities should develop internal review processes to assess operators <50 PCIs annually.
- Additional emphasis on educational symposiums, CME credits, and simulation courses may provide other venues to enhance quality for all operators.
- These recommendations supplant the recommendations in the 2011 ACCF/AHA/SCAI Guidelines on PCI.
- Operators should have ABIM board certification in interventional cardiology and maintain certification, with the exception of operators who have gone through equivalent training outside the United States and are ineligible to take the ABIM certification and recertification exams.

Primary PCI (see Section 2.8.1.3)

- Primary PCI for STEMI should be performed by experienced operators who perform a minimum of 50 elective PCI procedures per year, and, ideally, at least 11 PCI procedures for STEMI per year. Ideally, these procedures should be performed in institutions that perform more than 200 elective PCIs per year and more than 36 primary PCI procedures for STEMI per year.
- These recommendations supplant the recommendations in the 2011 ACCF/AHA/SCAI Guidelines on PCI.

QUALITY ASSURANCE

Institutional Requirements (see Section 2.10.2)

- Each institution that provides PCI services must establish an ongoing mechanism for valid and continuous peer review of its quality and outcomes.
- To reach these goals, every PCI program should operate a quality improvement program that routinely: 1) reviews quality and outcomes of the entire program; 2) reviews results of individual operators; 3) includes risk adjustment; 4) provides peer review of difficult or complicated cases; and 5) performs random case reviews.
- The review process should assess the appropriateness of the interventional procedures. Evaluation should include both the clinical criteria for the procedure and the quality and interpretation of the angiograms.
- Valid quality assessment requires that the institution maintain meticulous and confidential records that include patients' demographics and clinical characteristics necessary to assess these measures and conduct risk adjustment in a transparent manner.
• An independent and dedicated committee should be established and ideally include both physicians and relevant health care personnel in a cooperative effort minimizing any conflict of interest. Interventional cardiologists are best suited to perform the primary role in evaluating PCI quality and leading the quality assurance program.
• The process should be instituted with the support of hospital administrators, who can help provide resources for registry participation, conducting analyses, and support other aspects of the QI process.

Institutional Resources and Support (see Section 2.10.4)
• The institution must ensure that its catheterization facility is properly equipped and managed, and that all of its necessary support services, including data collection, are of high quality and are readily available.
• Educational activities such as cardiac catheterization and quality improvement conferences should be encouraged by the institution and should be held routinely. Presentation of clinical and technically-challenging cases, including those with complications and unexpected developments during the conduct of a PCI along with appropriateness reviews, is important.

National Benchmarking (see Sections 2.8.2.3 and 2.10.3.3)
• Participation in regional and national registries such as the NCDR® CathPCI Registry is strongly encouraged. Such registries should provide timely data that are risk-adjusted, robust, audited, and benchmarked so that clinicians, hospitals, regulatory bodies, and other stakeholders can accurately assess the quality of care delivered.

Quality Assessment and Implementation Process (see Sections 2.10.3.3, 2.10.3.4, 2.10.5, and 2.10.5.1)
• PCI quality assurance must include an ongoing, peer review assessment of the clinical proficiency of each operator including random case review, realistic identification of programmatic and individual operator strengths and weaknesses, and comparison of individual and aggregate outcomes against national standards and benchmark databases.
• Performance of all operators should be monitored using risk-adjusted outcome models with comparison to national benchmarks and operators should be reviewed for the appropriateness of procedures and indications criteria to assure the clinical necessity of the procedures.
• All operators should undergo periodic peer review, with more intensive review process for low-volume operators.
• In instances where operators are performing less than the suggested range, both institutions and operators are strongly encouraged to carefully assess whether their performance is adequate to maintain their competence and whether they should continue performing coronary interventions.
• A formal method of oversight for perceived conflicts of interest among peer reviewers should be used and carefully scrutinized.
• The quality assessment process should conduct random and detailed reviews of both cases that have adverse outcomes, to determine the causes of the adverse events, and of uncomplicated cases, in order to judge case selection appropriateness and procedural execution quality. These reviews should be conducted by recognized, experienced, unbiased interventional cardiologists drawn either from within the institution or externally. Noninvasive cardiologists may also participate in the review committees, especially when it comes to assessing procedural appropriateness.
• A timely and periodically-conducted review process is essential as the reviewers should provide continuous feedback to the institutions and operators to enhance the care process.
• Review of cine-angiography films should be undertaken to address technical issues.
- Confidential and constructive feedback of performance and outcomes data should be given to clinicians to promote changes in practice and improve performance.
- Addressing limitations of currently available databases to include other important quality metrics such as longer term efficacy and safety endpoints, quality of life, and resource utilization would be helpful in determining quality performance.

3. Other Coronary Interventions

Coronary interventions are occasionally required to provide an invasive therapeutic approach to hypertrophic cardiomyopathy, ventricular tachycardia (VT), and coronary fistulae. These are rare clinical situations that pose a unique problem for the establishment of operator and staff competency. These procedures should only be performed in major centers where there is a particular interest in the disease processes and adequate clinical volume to provide experience in the appropriate interventional techniques. A dedicated multidisciplinary team should be in place. These procedures require such a multidisciplinary team approach that involves cardiologists, surgeons, technicians, and nurses all working together to achieve optimal results.

3.1. Alcohol Septal Ablation for Hypertrophic Obstructive Cardiomyopathy

3.1.1. Background

The first description of the use of alcohol septal ablation for hypertrophic obstructive cardiomyopathy (HOCM) appeared in 1995 (159) and the 10-year follow-up of that first group of 12 patients was recently reported (160). While most studies have reported single-institutional data, the multicenter North American Registry data (161) reviewed 874 patients who had undergone the procedure. A mortality rate of 0.7% from the procedure was reported. This latter group outlined the major complications associated with the contemporary use of the procedure and the clinical variables that predicted death during follow up. A recent single-institution nonrandomized report of 177 patients who had alcohol ablation for HOCM revealed a survival similar to both the general population and to an age- and gender-matched surgical myomectomy cohort at 5.7 years of follow-up (162).

The principle of alcohol ablation depends on the localized injection of alcohol into a septal perforator artery that supplies the basal interventricular septum to create a controlled MI that will eventually lead to septal scarring and thinning. Localization requires identifying of the myocardium subtended by the coronary perforator. To properly perform the procedure requires a thorough knowledge of the geometric substrate. Usually left ventricular outflow track (LVOT) obstruction is caused by asymmetrical septal hypertrophy and anterior displacement of the papillary muscle resulting in contact of the septum and anterior mitral leaflet during systole. However, LVOT gradients may also result from an abnormal mitral valve with redundant leaflets or accessory chordae. In addition, changes in aorto-
ventricular alignment may also create obstruction with normal or only mild septal hypertrophy— a feature of LVOT obstruction in the elderly. Finally, gradients at the midventricular level or toward the left ventricular apex may not have the appropriate septal perforator supply and would not be appropriate for the use of alcohol ablation techniques. A thorough knowledge of catheterization anatomy and coronary interventional techniques, as well as echocardiographic and (even MRI) imaging of the left ventricular and mitral apparatus anatomy, is therefore critical in some cases of HOCM. These skills are a prerequisite for selection of the appropriate patients and for the successful performance of these studies.

The 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy (163) outlines a suggested treatment algorithm for the appropriate use of alcohol septal ablation in the treatment of symptomatic patients with HOCM. It is important that these procedures be performed only at specialized centers dedicated to the comprehensive and multidisciplinary treatment of these patients.

3.1.2. Criteria for Competency

3.1.2.1. Operator Competency

Using the ACGME core competencies to define the issues, it is the recommendation of this writing committee that the following be considered:

Patient Care: The operator should have a thorough knowledge of the impact HOCM physiology plays in the patient’s symptom complex. Many of the symptoms attributed to HOCM overlap with other disease states, particularly if there is concurrent lung disease, coronary disease, anemia, etc., so optimal patient care requires the operator to differentiate symptoms related to HOCM from these other issues. Medical therapy should be appropriate and considered to have been a failure before the procedure is attempted. At least 1 dedicated surgeon with a working knowledge of myectomy and valve repair should be part of the overall program, and there should be regular case reviews. For complex cases, surgical consultation should be sought and the multidisciplinary team should agree that the interventional procedure is warranted. Nursing staff should be trained to recognize complications, both early and late, following the procedure.

Medical Knowledge and Procedural Volume: To gain the appropriate skill set for the performance of alcohol ablation requires the knowledge base related to the disease process (as described above) and the technical skills to safely perform the procedure. Medical knowledge regarding the procedure can be gained at courses at major meetings, participation in clinical trials or by working with colleagues at one’s own institution or at another facility.
To gain the particular skill of alcohol ablation for HOCM patients, the committee suggests that initially each operator perform the first 5 studies in a proctored situation assisting a skilled operator. These procedures could be done at the operator’s own facility or at the skilled operator’s facility. The ACCF/AHA HOCM guideline suggests that an experienced operator should not be defined until one has performed >20 procedures or the procedures have all been performed at a facility that has a cumulative volume of 50 procedures. If the procedures are performed at a facility with a cumulative experience of <50 cases, it is recommended that the catheterization laboratory quality assurance committee (or one appointed by the institution) be responsible for reviewing all of the first 20 cases performed. For maintenance of skills, it is recommended that each individual principal operator perform at least 10 procedures per year. This latter number has also been suggested in a report from the SCAI training program directors (164) as being the minimal number for certification of cardiovascular trainees within the structural heart disease program who desire alcohol ablation skills as part of their interventional training.

The minimal number of procedures, however, does not correlate with either operator skill or patient outcomes. The committee feels strongly that alcohol ablation for HOCM should be performed only with a multidisciplinary team, and that volume is just 1 of many factors that should be considered in assessing operator competency. After each operator has developed the needed skillset in a proctored environment, then, given the rarity of the procedure, 5 alcohol ablations for HOCM per year should be considered a reasonable volume to maintain that skillset. The bottom line remains that the onus is on the local credentialing process and the quality assurance committee to ensure an operator is qualified and his/her procedural outcomes are of the highest possible quality.

Practice-based Learning: The facility should provide a regular forum for the presentation of individual cases and provide the operators with feedback on the techniques and results obtained. These reviews should stress the use of evidence-based therapy and discuss best practices. As the field develops, these regular conferences should stress ways to improve the procedure and both institutional and individual outcomes. Literature reviews should be incorporated and verification confirmed that the practices being used conform to the established guidelines.

Interpersonal and Communication Skill: At the recommended periodic review sessions, any communication or conflicts regarding the appropriateness of the procedures or the technical issues should be directly discussed. Patient satisfaction should be addressed and criticisms acted upon. Feedback from staff and nursing should also be provided to ensure optimal patient care is being performed and that staff members are receiving the appropriate training.
Professionalism: Any criticism of the handling of the patient’s care at any stage should be addressed. This includes ensuring the patient and his family understand the procedure, are treated respectfully and honestly, the consent process is clear, the referring physician is kept well informed, and all of the team members are acknowledged for their contributions.

Systems-based Practice: The facility should have a formal commitment to the structural heart disease program and be supportive of establishing and maintaining the highest quality. Since care of the patient requires careful follow-up, it is important that the practitioners in the entire health system be aware of the potential complications from the procedure, and that a system is in place that allows for potential issues to be addressed should an untoward event occur after the procedure. As many patients will receive the bulk of their care locally and not at the referral center, a systems-wide educational effort should be made to inform the health care professionals of the indications and contraindications of the procedure and the expected outcomes. A clear mechanism should be in place that allows ready access to a member of the procedural team should questions arise.

3.1.2.2. Staff Competency
Many of the core competencies that apply to the operator are transferrable to staff involved as well. There should be a dedicated staff that has an interest in the procedure. It is particularly important that the cardiac catheterization team and the echocardiographic team work together, and they are considered a vital part of the procedural effort. The staff should be trained to anticipate all aspects of the procedure. Not only should initial training be formalized, but also continuing education should be considered a key element in the program design and maintenance.

3.2. Alcohol Ablation for Ventricular Arrhythmias

3.2.1. Background
When catheter-based ablation techniques to control VT using endocardial and epicardial techniques fail to resolve an intractable VT focus, a controlled infarction of the VT circuit may be feasible with alcohol injection into an epicardial coronary branch that supplies the region of interest on electrophysiologic mapping (165). Once a potential branch is identified the injection of iced saline or transient balloon occlusion of the vessel is performed to observe whether the arrhythmia terminates. Multiple branches may be tested before VT termination is achieved. If such a vessel is identified, alcohol injection then is used to produce a controlled infarction within the VT circuit. In 1 series, the method was reported successful in 56% of the patients attempted (166). The need for this approach has been estimated to be very low at about 1%-2% of VT ablation cases (167).
3.2.2. **Criteria for Competency**

Given the highly specialized setting where this procedure is being attempted, only those in a tertiary center with experience in both coronary intervention and electrophysiology studies should consider performing these procedures. There are no established guidelines, and only case reports and very small series have been reported. Operators must meet established criteria for routine competency in this infrequently performed procedure, and should be knowledgeable and capable of describing the risks and benefits of this procedure versus other clinical choices. Alcohol ablation for VT should always be performed in the presence of the electrophysiologist who performed the mapping and the electrophysiology ablation procedure. The alcohol ablation procedure should be performed under continuous direct electrophysiologic guidance. Prospective and retrospective catheterization laboratory review of such cases should be routinely undertaken, and at times institutional review board approval should be sought for unusual situations. While the committee acknowledges these procedures are being occasionally done in very controlled settings, monitoring these “orphan” procedures necessarily requires a robust quality assurance program to ensure patient safety and to approve operator competence. Institutional board review approval is a requisite.

3.3. **Coronary Artery Fistula Closure**

3.3.1. **Background**

The vast majority of coronary fistulae are congenital in nature, though iatrogenic fistulae have been reported after PCI for total occlusions, after septal myectomy for HOCM and following right heart biopsies of the interventricular septum. Congenital fistulae can arise from either coronary and generally (but not always) drain into right heart structures. Large fistulae carry a risk for coronary steal and myocardial ischemia and/or infarction. Rarely dissection, rupture and endarteritis have been reported. Small fistulae may increase in size over time. Most coronary fistulae are detected as incidental findings during coronary angiography and are of no consequence. Auscultation of large fistulae reveals a continuous murmur. Closure of large fistulae has been achieved most often with coils, though vascular plugs and covered stents may be used when appropriate and feasible. The 2008 ACC/AHA Guidelines for Adults with Congenital Heart Disease (168) recommend that all symptomatic coronary fistulae should be intervened upon, but only large, audible fistula should be occluded if no symptoms. It is recognized that there are no clear definitions of symptoms related to these fistulae, unless there is evidence for a volume overload or demonstrable myocardial ischemia.
3.3.2. Criteria for Competency

3.3.2.1. Operator Competency

Patient Care: As most patients do not need intervention for incidental coronary fistulae, optimal patient care requires the operator be able to identify those that require closure and understand how to best assess whether the lesion has significance. Surgical consultation should be included in the evaluation to ensure the appropriate approach is being considered. If a vascular interventional radiologist has experience in vascular occlusion, consultation with him/her should be part of good patient care.

Medical Knowledge and Procedural Volume: The operator should have a thorough understanding of the cause and anatomic features of any coronary fistula of concern. Delineation of the course of the fistula is critical to deciding if any percutaneous approach is feasible. The operator must be comfortable with coronary intervention and understand how to use vascular coils, plugs, and covered stents depending on what is required. The procedures should only be done in centers that have a particular interest in such interventions. Because of the rarity of these procedures, a team approach with interventional radiology and surgery should be considered optimal when the operator is gaining experience. While the SCAI training director’s survey suggested a competency threshold of 10 procedures for cardiovascular fellows (164), this procedure is so uncommon and sporadic that it would be unlikely that such a threshold is achievable even in large programs. The onus once again falls on the credentialing and quality assurance oversight committees to review all of these procedures done at any institution.

Practice-based Learning: The need for input from physicians outside the interventional cardiac catheterization laboratory mandates that patients proposed for this procedure be presented at a forum where the pros and cons of catheter-based and surgical-based options are presented. Various approaches should be discussed in the context of the group experience and the available literature. Attendance at national or regional meetings to improve the skill set need should be encouraged.

Interpersonal and Communication Skills: Patients and staff should have a thorough understanding of the procedure. Communication with patients’ families and referring physicians is vital in case an adverse outcome should result. Operators must be able to work with consultants to arrive at the appropriate decision making.

Professionalism: Operators should be able to accept the advice of colleagues from surgery and radiology regarding the best approach for coronary fistula closure. Team members should be respected for their contributions.
Systems-based Practice: As with other structural heart disease conditions, there must be a strong commitment from the facility administration to encourage and support a program that provides unique care offered at few other places. Communication of the ability to perform these procedures should be known throughout the respective health system. An effort should be made by the principle faculty and operators in the structural heart disease program to educate physicians in the hospital network as to when the procedure is required. Outcome data should be presented periodically so that physicians and other healthcare providers understand the risks and anticipated results from the procedure.

3.3.2.2. Staff Competency

As with all coronary procedures the vital core competencies described must be an integral part of the expectation from staff as well as operators in the cardiac catheterization laboratory. Staff should be informed of procedural requirements and educated about the use of each of the interventional devices that is anticipated to be required. They should be an integral part of the process. They should be educated as to the complications that might occur, so as to best alert the operator at the earliest time when a potential untoward event appears imminent.

3.4. Summary of Key Recommendations Regarding “Other Coronary Interventions”

Multidisciplinary Approach

- Given that coronary interventions in patients with hypertrophic cardiomyopathy, ventricular tachycardia and coronary fistulae are rare, a team approach including coronary interventionalists, cardiothoracic surgeons, and cardiothoracic anesthesiologists is important for optimal results. Dedicated personnel should be identified and a regular review of program activity and results documented.

Institutional Requirements

- These procedures should only be done in institutions with a strong commitment to provide all of the necessary equipment and staff support required to ensure these rare and complex procedures can be done safely and with a high degree of success.

Operator Competence

- The ACGME Core Competency Structure pertaining to medical knowledge; patient care and procedures; practice-based learning; systems-based practice; interpersonal and communication skills; and professionalism are outlined above for each procedure. While there are no established minimal volume numbers for these procedures, it is suggested for HOCM alcohol ablation that the first 5 procedures be proctored and that maintenance of skills generally requires the performance of at least 5 procedures per year.
THE CRITICAL IMPORTANCE OF THE QUALITY ASSURANCE PROGRAM

- All of the issues outlined in regard to the QA program for routine PCI procedures apply to the performance of these procedures. In addition, however, given the rarity of the procedures, it is recommended that all coronary interventions for HOCM, coronary fistula and VT be reviewed by the multidisciplinary team and the institutional QA process. These processes must be functioning and active to provide appropriate oversight if operators are to perform these uncommon coronary procedures in a safe and monitored environment.

President and Staff

American College of Cardiology Foundation
John G. Harold, MD, MACC, FAHA President
Shalom Jacobovitz, Chief Executive Officer
William J. Oetgen, MD, MBA, FACC, Senior Vice President, Science and Quality
Charlene L. May, Senior Director, Science and Clinical Policy
Dawn R. Phoubandith, MSW, Director, ACCF Clinical Documents
Grace D. Ronan, Specialist, Science and Clinical Policy
Erin A. Barrett, MPS, Senior Specialist, Science and Clinical Policy

American Heart Association
Donna Arnett, Ph.D., M.S.P.H., FAHA, President
Nancy Brown, Chief Executive Officer
Rose Marie Robertson, MD, FAHA, Chief Science Officer
Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations
Judy L. Bezanson, DSN, RN, CNS-MS, FAHA, Science and Medicine Advisor

Society of Cardiovascular Angiography and Interventions
Theodore A. Bass, MD, FACC, FSCAI, President
Norm Linsky, Executive Director
Joel Harder, MBA, Director for Quality Initiatives and Clinical Documents
References

Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart
Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed

53. Aversano T, Aversano LT, Passamani E, et al. Thrombolytic therapy vs primary percutaneous coronary
intervention for myocardial infarction in patients presenting to hospitals without on-site cardiac surgery: a

54. Dehmer GJ, Blankenship J, Wharton TP, Jr., et al. The current status and future direction of percutaneous
_coronary intervention without on-site surgical backup: an expert consensus document from the Society for

55. Melberg T, Nilsen DW, Larsen AI, et al. Nonemergent coronary angioplasty without on-site surgical

56. Singh PP, Singh M, Bedi US, et al. Outcomes of nonemergent percutaneous coronary intervention with and

57. Moscucci M, Eagle KA, Share D, et al. Public reporting and case selection for percutaneous coronary
interventions: an analysis from two large multicenter percutaneous coronary intervention databases. J Am

2006;113:814-22.

60. Tiroch KA, Arora N, Matheny ME, et al. Risk predictors of retroperitoneal hemorrhage following

nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll

intervention: the development of a clinical risk algorithm from the National Cardiovascular Data Registry.

63. Luft HS, Bunker JP, Enthoven AC. Should operations be regionalized? The empirical relation between

report of the American College of Cardiology/American Heart Association Task Force on Assessment of
Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal

65. Ryan TJ, Klocke FJ, Reynolds WA. Clinical competence in percutaneous transluminal coronary
angioplasty: a statement for physicians from the ACC/AHA Task Force on Clinical Privileges in

66. Brindis RG, Weintraub WS, Dudley RA. Volume as a surrogate for percutaneous coronary intervention
quality: is this the right measuring stick? Am Heart J. 2003;146:932-4.

1993;88:2735-43.

84. McGrath PD, Wennberg DE, Dickens JD, Jr., et al. Relation between operator and hospital volume and outcomes following percutaneous coronary interventions in the era of the coronary stent. JAMA. 2000;284:3139-44.

158. Brindis RG, Dehmer GJ. Continuous quality improvement in the cardiac catheterization laboratory: are the benefits worth the cost and effort? Circulation. 2006;113:767-70.

Key Words: AHA Scientific Statements ■ Clinical Competence ■ Percutaneous Coronary Intervention ■ Angioplasty, Balloon, Coronary ■ Quality Assurance ■ Coronary Disease ■ Quality Improvement ■ Peer Review, Healthcare ■
Appendix 1. 2013 ACCF/AHA/SCAI Clinical Competence Statement on Coronary Artery Interventional Procedures (Revision of 2007 Statement) — Author Relationships with Industry and Others Entities (Relevant)

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership / Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Bashore</td>
<td>Duke University Medical Center—Professor of Medicine; Clinical Chief, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Theodore A. Bass</td>
<td>University of FloridaShands Jacksonville Cardiovascular Center—Professor of Medicine; Chief Cardiology Division</td>
<td>Daiichi Sankyo-Lilly†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ralph G. Brindis</td>
<td>University of California, San Francisco—Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John Brush</td>
<td>Eastern Virginia Medical School; Sentara Cardiology Specialists, Sentara Healthcare — Professor of Medicine</td>
<td>United Healthcare Scientific Advisory Board</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James A. Burke</td>
<td>Lehigh Valley Heart Network—Associate Chief of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Committee Member</td>
<td>Employment</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/ Partnership / Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td>-------------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Gregory J. Dehmer</td>
<td>Texas A&M College of Medicine, Scott & White Clinic Cardiology Division— Professor of Medicine; Director of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Direct Flow Medical</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Yuri Deychak</td>
<td>Johns Hopkins Community Physicians Heartcare— Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John Harold</td>
<td>Cedars-Sinai Heart Institute— Attending Physician; Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA—Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hani Jneid</td>
<td>Baylor College of Medicine and the MEDVAMC— Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James Jollis</td>
<td>Duke University Medical Center— Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Medtronic Foundation† • Sanofi-Aventis†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joel Landzberg</td>
<td>Hackensack University Medical</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Boehringer Ingelheim, RELY,</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Committee Member</td>
<td>Employment</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Harold, JG et al.</td>
<td>ACCF/AHA/SCAI Clinical Competence Statement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center—Clinical Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>RELYABLE studies—PI</td>
<td>Roche, DALOutcomes studies—PI</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Glenn Levine</td>
<td>Baylor College of Medicine—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James B. McClurken</td>
<td>Temple University Hospital Department of Cardiothoracic Surgery—</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John C. Messenger</td>
<td>University of Colorado—Director, Cardiac Cath Lab; Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Medtronic*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Issam D. Moussa</td>
<td>Mayo Clinic, Florida—Professor and Chair, Division of Cardiovascular Diseases</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>J. Brent Muhlestein</td>
<td>Intermountain Medical Center—Professor of Medicine</td>
<td>None</td>
<td>Bristol-Myers Squibb, Daiichi-Sankyo, Forest, Gilead, Lilly, Merck, Sanofi-Aventis</td>
<td>None</td>
<td>Glaxo</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard M. Pomerantz</td>
<td>St. Agnes Hospital—</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of 5% or more of the voting stock or share of the business entity, or ownership of ≥$10 000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to http://www.cardiosource.org/Science-And-Quality/Practice-Guidelines-and-Quality-Standards/Relationships-With-Industry-Policy.aspx for definitions of disclosure categories or additional information about the ACCF Disclosure Policy for Writing Committees.

* No financial benefit.
† Significant relationship.
PI indicates principal investigator
Appendix 2. 2013 ACC/AHA/SCAI Clinical Competence Statement on Coronary Artery Interventional Procedures (Revision of 2007 Statement) —Reviewer Relationships With Industry and Other Entities (Relevant)

<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Employer/Title</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyndon C. Box</td>
<td>Official Reviewer—Society for Cardiovascular Angiography and Interventions</td>
<td>University of Florida Division of Cardiology—Assistant Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>George D. Dangas</td>
<td>Official Reviewer—ACCF Board of Trustees</td>
<td>Mount Sinai Medical Center—Program Director, Interventional Cardiology</td>
<td>Astra-Zeneca</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Johnson & Johnson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Merck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sanofi-Aventis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David P. Faxon</td>
<td>Official Reviewer—American Heart Association</td>
<td>Brigham and Women’s Hospital—Professor of Medicine</td>
<td>Boston Scientific Corporation</td>
<td>None</td>
<td>REVA Medical</td>
<td>Sanofi-Aventis</td>
<td>Circulation: Cardiovascular Interventions—Editor†</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Employer/Title</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------------------</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Daniel Kolansky</td>
<td>Official Reviewer—American Heart Association</td>
<td>Hospital of the University of Pennsylvania—Director, Cardiac Care Unit</td>
<td>• Up To Date</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Conor MedSystems</td>
</tr>
<tr>
<td>John P. Reilly</td>
<td>Official Reviewer—Society for Cardiovascular Angiography and Interventions</td>
<td>Ochsner Clinic Foundation—Director, Cardiovascular CT</td>
<td>None</td>
<td>• Daiichi-Sankyo-Lilly†</td>
<td>• Johnson & Johnson†</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jean-Francois Tanguay</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>Institut de Cardiologie de Montreal—Director, Coronary Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott Vascular†</td>
<td>None</td>
</tr>
<tr>
<td>Andrew Wang</td>
<td>Official Reviewer—ACCF Task Force on Clinical Competence and Training Statements</td>
<td>Duke University Medical Center Division of Cardiovascular Medicine—Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott Vascular†</td>
<td>None</td>
</tr>
<tr>
<td>H. Vernon Anderson</td>
<td>Content Reviewer—ACCF Interventional</td>
<td>University of Texas Cardiology Division—</td>
<td>• Symbios Clinical Research</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Eli Lilly</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Employer/Title</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Harold, JG et al.</td>
<td>ACCF/AHA/SCAI Clinical Competence Statement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric R. Bates</td>
<td>Scientific Council</td>
<td>Professor of Medicine</td>
<td>- AstraZeneca</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Content Reviewer—ACCF/AHA/SCAI PCI Guideline</td>
<td></td>
<td>*University of Michigan Hospitals and Health Centers—Professor of Medicine</td>
<td>*- Bristol Myers Squibb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>- Daich-Sankyo</td>
<td></td>
<td>- Eli Lilly</td>
<td>- Merck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>- Sanofi-Aventis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>James C. Blankenship</td>
<td>Content Reviewer—ACCF/AHA/SCAI PCI Guideline</td>
<td>Geisinger Medical Center—Director, Cardiac Catheterization Lab</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>- Abiomed</td>
<td></td>
<td>- AstraZeneca</td>
<td>- Boston Scientific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>- Kai Pharmaceutical</td>
<td></td>
<td>- Novartis</td>
<td>- Schering-Plough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>- The Medicines Company</td>
<td></td>
<td>- Volcano Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Emmanouil S. Brilakis</td>
<td>Content Reviewer—ACCF Interventional Scientific Council</td>
<td>*University of Texas Southwestern Medical School—Director, Cardiac Catheterization Lab, VA North</td>
<td>- Bridgepoint Medical</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Medtronic†</td>
</tr>
<tr>
<td>- HMP Communication</td>
<td></td>
<td>*- St. Jude†</td>
<td>*- Terumo†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Defendant, review of case of left main disease, 2011</td>
</tr>
<tr>
<td>*- St. Jude†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*- Terumo†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Employer/Title</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>John G. Byrne</td>
<td>Content Reviewer—ACCF Surgeon Scientific Council</td>
<td>Vanderbilt University Medical Center—Chair, Department of Cardiac Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Defendant, cardiac surgery, 2010</td>
</tr>
<tr>
<td>T. Bruce Ferguson, Jr.</td>
<td>Content Reviewer—ACCF Surgeon Scientific Council</td>
<td>East Carolina Heart Institute Brody School of Medicine—Professor of Surgery and Physiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Novadaq Technologies, Inc.†</td>
<td>• Edwards Laboratories</td>
</tr>
</tbody>
</table>
| Kirk N. Garratt | Content Reviewer—ACCF NCDR CathPCI Research and Publications Subcommittee | Lenox Hill Hospital—Associate Professor of Medicine | • Abbott Vascular
• Boston Scientific
• Daiichi-Sankyo-Eli Lilly†
• The Medicines Company | • Abbott Vascular
• Boston Scientific
• Medtronic
• The Medicines Company | None | None | None | • Defendant, blood pressure management and elective angiography, 2008
• Defendant, radial access for angioplasty, 2006
• Defendant, indication for bypass surgery, 2005 |

Page 80 of 87
<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Employer/Title</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lloyd W. Klein</td>
<td>Content Reviewer—ACCF Interventional Scientific Council</td>
<td>Rush University Medical Center—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Austin H. Kutscher, Jr.</td>
<td>Content Reviewer—ACCF Board of Governors</td>
<td>Hunterdon Cardiovascular Associates</td>
<td>• Medtronic</td>
<td>• Boehringer</td>
<td>None</td>
<td>• Boehringer</td>
<td>• Boehringer, Pradaxa GI study—PI</td>
<td>None</td>
</tr>
<tr>
<td>Steven J. Lester</td>
<td>Content—ACCF Task Force on Clinical Competence and Training Statements</td>
<td>Mayo Clinic—Associate Professor of Medicine, Department of Cardiovascular Diseases</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas Lewandowski</td>
<td>Content Reviewer—ACCF Board of Governors</td>
<td>Appleton Cardiology Associates—Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sandra Lewis</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>NW Cardiovascular Institute—Clinical Associate Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Roche</td>
<td>• Medtronic* • Regence BlueCrossBlue Shield</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Employer/Title</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Scott M. Lilly</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>University of Pennsylvania—Fellow, Interventional Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
| Ehtisham Mahmud | Content Reviewer—ACCF Interventional Scientific Council | University of California, San Diego—Chief of Cardiovascular Medicine; Co-Director, Sulpizio Cardiovascular Center; Director, Interventional Cardiology & Cardiovascular Catheterization Labs | • Eli Lilly†
• Gilead
• Medtronic | • Eli Lilly†
• Medtronic | None | • Abbott Vascular†
• Accumetrics†
• Boston Scientific†
• Gilead†
• Merck
• SheringPlough
• Sanofi Aventis
• Eli Lilly†
• The Medicines Company† | • St. Jude’s
None | None |
| Debabrata Mukherjee | Content Reviewer—ACCF Interventional Scientific Council | Texas Tech University Health Sciences Center—Chief, Cardiovascular Medicine | None | None | None | None | None | None |
| Srinivas Murali | Official Reviewer—ACCF Board of Governors | Allegheny General Hospital—Director, | • Gilead
• Bayer | None | None | None | None | None |
<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Employer/Title</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srihari Naidu</td>
<td>Content Reviewer—ACCF Interventional Scientific Council</td>
<td>Winthrop University Hospital—Director, Cardiac Catheterization Lab</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rick Nishimura</td>
<td>Content Reviewer—ACCF/AHA Ventricular Heart Disease Guideline</td>
<td>Mayo Clinic, Division of Cardiovascular Services—Judd and Mary Morris Leighton Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Patrick O’Gara</td>
<td>Content Reviewer—ACCF/AHA ST Elevation Myocardial Infarction Guideline</td>
<td>Harvard Medical School; Brigham and Women’s Hospital—Professor of Medicine; Director, Clinical Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Lanthues Medical Imaging (DSMB)</td>
<td>None</td>
</tr>
<tr>
<td>Sunil V. Rao</td>
<td>Content Reviewer—ACCF</td>
<td>Duke University Medical Center—</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Defendant, catheterization related</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Employer/Title</td>
<td>Consultant</td>
<td>Speaker’s Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational, or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| Michael E. Ring | Official Reviewer—ACCF Board of Governors | Providence Sacred Heart Medical Center and Children’s Hospital | • Boston Scientific
• Medtronic | None | None | None | None | • Defendant, certificate of need for PCI, 2012 |
<p>| John F. Robb | Official Reviewer—ACCF Board of Governors | Dartmouth-Hitchcock Medical Center—Director, Interventional Cardiology | None | None | None | None | • Edwards LifeSciences, Partner 2—PI* | None |
| Robert A. Shor | Official Reviewer—ACCF Board of Governors | The Cardiovascular Group, PC—Cardiologist | None | None | None | None | None | None |
| John W. Shuck | Official Reviewer—ACCF Board of Governors | Cardiology Consultants—Cardiologist | None | None | None | None | None | None |
| George L. Smith | Official Reviewer—ACCF Board of Governors | Northern California Medical Associates—Cardiologist | None | None | None | None | None | None |</p>
<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Employer/Title</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl L. Tommaso</td>
<td>Content Reviewer—ACCF/AHA PCI</td>
<td>Northshore Medical System</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Defendant, retained wire, 2006</td>
</tr>
<tr>
<td>E. Murat Tuzcu</td>
<td>Content Reviewer—ACCF Interventional Scientific Council</td>
<td>Cleveland Clinic Foundation — Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Edwards Lifesciences*</td>
<td>None</td>
</tr>
<tr>
<td>Robert C. Welsh</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>University of Alberta and Mazankowski Alberta Heart Institute — Associate Professor; Director, Adult Cardiac Catheterization and Interventional Cardiology</td>
<td>AstraZeneca, Bayer, Boehringer Ingelheim, Edwards Lifesciences, Eli Lilly, Medtronic, Servier</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Abiomed</td>
<td>None</td>
</tr>
</tbody>
</table>
This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of $\geq 5\%$ of the voting stock or share of the business entity, or ownership of $\geq 10,000$ of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACCF/AHA, a person has a relevant relationship IF: a) The relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document, or b) The company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document, or c) The person or a member of the person’s household, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

* No financial benefit.
† Indicates significant relationship.

ACCF indicates American College of Cardiology Foundation; AHA, American Heart Association; NCDR, National Cardiovascular Data Registry; PCI, Percutaneous Coronary Intervention; SCAI, Society for Cardiovascular Angiography and Interventions
Appendix 3. Acronyms and Abbreviations List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIM</td>
<td>American Board of Internal Medicine</td>
</tr>
<tr>
<td>ACCF</td>
<td>American College of Cardiology Foundation</td>
</tr>
<tr>
<td>ACP</td>
<td>American College of Physicians</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CME</td>
<td>continuing medical education</td>
</tr>
<tr>
<td>COCATS</td>
<td>Core Cardiology Training</td>
</tr>
<tr>
<td>DTB</td>
<td>door-to-balloon</td>
</tr>
<tr>
<td>HOCM</td>
<td>hypertrophic obstructive cardiomyopathy</td>
</tr>
<tr>
<td>LVOT</td>
<td>left ventricular outflow track</td>
</tr>
<tr>
<td>MACCE</td>
<td>major adverse cardiovascular and cerebrovascular events</td>
</tr>
<tr>
<td>MACE</td>
<td>major adverse cardiac events</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>MOC</td>
<td>maintenance of competence</td>
</tr>
<tr>
<td>NCDR</td>
<td>National Cardiovascular Data Registry</td>
</tr>
<tr>
<td>PCI</td>
<td>percutaneous coronary intervention</td>
</tr>
<tr>
<td>PPCI</td>
<td>primary percutaneous coronary intervention</td>
</tr>
<tr>
<td>PTCA</td>
<td>percutaneous transluminal coronary angioplasty</td>
</tr>
<tr>
<td>QI</td>
<td>quality improvement</td>
</tr>
<tr>
<td>SCAI</td>
<td>Society for Cardiovascular Angiography and Interventions</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST segment elevation myocardial infarction</td>
</tr>
<tr>
<td>VT</td>
<td>ventricular tachycardia</td>
</tr>
</tbody>
</table>
Online Appendix 1. Selective Reports Relating Institutional PCI Volume to Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Data Source</th>
<th>No. of patients/ centers studied</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartz et al. (1), 1992</td>
<td>1989–1991 Wisconsin Medicare</td>
<td>2,091/16</td>
<td>No relation between volume and outcome</td>
<td>Very low number of cases and hospitals examined</td>
</tr>
<tr>
<td>Ritchie et al. (2), 1993</td>
<td>1989 California State (Adm)</td>
<td>24,883/110</td>
<td>Increased CABG (not death) less than 20 cases per yr; finding is valid for both acute MI and non-acute MI patients</td>
<td></td>
</tr>
<tr>
<td>Jollis et al. (3), 1994</td>
<td>1987–1990 MEDPAR (Adm)</td>
<td>217,836/1,194</td>
<td>Death and CABG increased with low volume (risk increases with Medicare patient volume* (<100–200 total per yr for death, 200–300 per yr for CABG)</td>
<td></td>
</tr>
<tr>
<td>Jollis et al. (5), 1997</td>
<td>1992 Medicare (Adm)</td>
<td>97,498/984</td>
<td>Incremental decrease in death and bypass surgery as hospital Medicare volume* <100, 100–200, >200 per yr</td>
<td></td>
</tr>
<tr>
<td>Hannan et al. (6), 1997</td>
<td>1991–1994 NY State</td>
<td>62,670/31</td>
<td>Death and same stay CABG increased with annual caseloads <600</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Ho et al. (7), 2000</td>
<td>1984–1996 California, OSHPD database (Adm)</td>
<td>353,488/129</td>
<td>PTCA procedure volume (low volume <200 PCIs, intermediate volume 200–400 PCIs/yr, high-volume</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients/ centers studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Kimmel et al. (8), 2002</td>
<td>Pennsylvania Health Care Cost Containment Council database</td>
<td>25,222/43</td>
<td>Higher PCI volume (≥400) was associated with reduced in-hospital CABG</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No association between PCI volume and post-discharge CABG, revascularization, MI, or mortality.</td>
<td></td>
</tr>
<tr>
<td>Epstein et al. (9), 2004</td>
<td>The Agency for Healthcare Research and Quality's Nationwide In-patient Sample Hospital Discharge database</td>
<td>362,748 / 457</td>
<td>Compared with high-volume hospitals (400-999 cases/yr), patients treated in low-volume hospitals (5 to 199 cases/yr) remained at increased risk for mortality after multivariable adjustment.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patients treated in medium- (200-399 cases/yr) and very high-volume (≥1,000 cases /yr) hospitals had a comparable risk of mortality.</td>
<td></td>
</tr>
<tr>
<td>Moscucci et al. (10), 2005</td>
<td>1998–1999 NY State and MI</td>
<td>11,374/8</td>
<td>In-hospital death increased for hospital volume <400.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Hannan et al. (11), 2005</td>
<td>1998–2000 NY State</td>
<td>107,713/34</td>
<td>Death, same-day CABG, same-stay CABG increased for hospital volume <400.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Carey et al. (12), 2005</td>
<td>1999–2001 California OSHPD (Adm)</td>
<td>153,755 PCI procedures/ 138</td>
<td>PCI mortality in low-volume (<600/year) hospitals is statistically significantly higher compared with that in</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients/ centers studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Burton et al. (13), 2006</td>
<td>1997 - 2003 Cohort study of all PCIs undertaken in Scottish National Health Service hospitals. Scotland</td>
<td>17,417 PCI procedures / 6</td>
<td>high-volume (≥600/year) hospitals. No volume effect was noted for PCI mortality after risk-adjustment.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Allareddy et al. (14), 2007</td>
<td>2000 -2003 Nationwide Inpatient Sample of the Healthcare Cost and Utilization Project (representing a 20% stratified sample of community hospitals in the United States) (Adm)</td>
<td>573,072 PCI procedures /744</td>
<td>No significant differences in the risk of 30-d and 2-year death or MI. No net difference in revascularization at 2 years. Patients treated in high-volume hospitals (>750 PCIs/yr) were less likely to require CABG at 30 days and 2 years.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Zahn et al. (15), 2008</td>
<td>2003 PCI registry of all consecutive PCI procedures from an association of non-university centers Germany</td>
<td>27,965 / 67</td>
<td>PCI performed at hospitals with a volume of >325 PCI/yr was independently associated with a lower hospital mortality.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Lin et al. (16), 2008</td>
<td>2003 Taiwan National Health</td>
<td>12,369 / 59</td>
<td>Low-volume PCI centers (<200 cases per year) had</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients/ centers studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Insurance Research Database and the Cause of Death Data File Taiwan</td>
<td>higher adjusted 30-d mortality compared with high-volume centers (≥400 PCIs/year). Medium- (200-399 PCIs/year) and high-volume centers (≥400 PCIs/year) had comparable 30-d mortality.</td>
<td>Risk-adjusted</td>
<td>By multivariate modeling, operator volume was not predictive of adverse clinical events.</td>
</tr>
<tr>
<td></td>
<td>1999-2000 Substudy from the ESPRIT trial USA, Canada</td>
<td>1,338/ 57</td>
<td>Institutional volume was associated with a modest adjusted reduction in risk of death, MI or TVR at 30 days and one year. The rates of 30-day and one-year death, MI or TVR fell by 3% for every 100 patients treated by the institution.</td>
<td></td>
</tr>
</tbody>
</table>

CABG indicates coronary artery bypass graft surgery; ESPRIT, CI, confidence interval; Enhanced Suppression of the Platelet glycoprotein IIb/IIIa Receptor with Integrilin Therapy trial; MEDPAR, Medicare Provider Analysis and Review; MI, myocardial infarction; OSHPD, Office of Statewide Health Planning and Development; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; TVR, target vessel revascularization.

*Medicare patients usually constitute 35% to 50% of total interventional caseload.
Online Appendix 2. Stent-Era Evaluations of Associations between Operator Volume and Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Data Source</th>
<th>No. of PCIs or patients undergoing PCI / Interventional operators Studied</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGrath et al. (19), 2000</td>
<td>1997 Medicare National Claims, US</td>
<td>167,208 patients / 6,534 operators</td>
<td>After adjustment for case mix, patients treated by low-volume (<30 PCIs) operators had an increased risk of CABG compared with patients treated by high-volume (>60 PCIs) operators, but no differences in 30-day mortality were observed.</td>
<td>Medicare patients treated by high-volume physicians at high-volume centers experienced the best outcomes following PCIs.</td>
</tr>
<tr>
<td>Harjai et al. (20), 2004</td>
<td>1999-2001 Beaumont, US</td>
<td>12,293 PCIs / 28 operators</td>
<td>Operator volume, experience, and board certification showed no univariate or multivariate relation with inhospital mortality or the composite clinical end-point (death, CABG, MI or stroke).</td>
<td>The Beaumont PCI Risk Score showed a strong independent relation with outcomes, indicating that patients' clinical risk is the overriding determinant of clinical outcomes.</td>
</tr>
<tr>
<td>Hannan et al. (11), 2005</td>
<td>1998-2000 New York PCI Registry, US</td>
<td>107,713 patients / 263 operators</td>
<td>For an operator volume threshold of 75 PCIs/year, ORs for low- vs. high-volume operators were 1.65 (95% CI: 1.05 to 2.60) for same-day CABG and 1.55 (95% CI: 1.10 to 2.18) for same-stay.</td>
<td>Risk-adjusted Higher-volume hospitals also experienced lower risk-adjusted of PCI outcome rates.</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of PCIs or patients undergoing PCI / Interventional operators Studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Mosucci et al. (21), 2005</td>
<td>2002 University of Michigan regional consortium</td>
<td>18,504 PCIs / 165 operators</td>
<td>Operator volume was not significantly associated with mortality.</td>
<td>CAGB.</td>
</tr>
<tr>
<td>Mustafa et al. (22), 2005</td>
<td>2000-2002 New Jersey, US</td>
<td>6,510 PCIs / 51 operators</td>
<td>Operators' volume was divided into quintiles (1-33, 34-89, 90-139, 140-206, and 207-582 PCIs/year). Patients treated by low-volume operators had a 63% increased odds of MACE (adjusted OR=1.63, 95% CI:1.29 to 2.06, for Q1 vs. Q5; adjusted OR=1.63, 95% CI:1.34 to 1.90, for Q2 vs. Q5), but no significant differences in-hospital mortality were observed.</td>
<td>Risk-adjusted Stent utilization >80% Although the relationship between operator volume and in-hospital mortality was no longer significant, the relationship between volume and any adverse outcome was still present.</td>
</tr>
</tbody>
</table>
| Cantor et al. (23), 2006 | 1995-2001 Ontario, Canada | 38,561 PCIs / 65 operators (n=8 hospitals) | After stratifying operators by average annual PCI volume into low- (<155 cases), intermediate- (155-195 cases), and high-volume | These findings might be attributable to the high annual volumes of most operators and institutions in Ontario. | | }
<table>
<thead>
<tr>
<th>Study</th>
<th>Data Source</th>
<th>No. of PCIs or patients undergoing PCI / Interventional operators Studied</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minges et al. (24), 2011</td>
<td>2009 ACCF NCDR® National Cath Registry, US</td>
<td>345,526 PCI / 3,649 operators (n=543 hospitals)</td>
<td>(>195 cases), no significant linear relationships between risk-adjusted outcomes and operator tertiles existed.</td>
<td>The correlation between in-hospital mortality and physician volume was only modest.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In-hospital mortality was higher among physicians performing <75 PCIs/year compared with ≥75 PCIs/year (1.55 vs. 1.25%, p<0.001; adjusted OR=1.14, 95% CI:1.05 to 1.24). Higher rates of bleeding, emergency PCI, post-operative CABG, and longer mean length of stay were observed in lower-volume operators (<75 PCIs/year).</td>
<td>The absolute differences in mortality were small and no apparent operator volume threshold existed.</td>
</tr>
</tbody>
</table>

ACCF indicates American College of Cardiology Foundation; CABG, coronary artery bypass graft surgery; CI, confidence interval; MACE, major adverse cardiac event; MI, myocardial infarction; NCDR®, National Cardiovascular Data Registry; OR, odds ratio; and PCI, percutaneous coronary intervention.
Online Appendix 3. Selective Published Reports Relating Hospital and Operator Primary PCI Volume after AMI to Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Data Source</th>
<th>No. of patients (or PCIs)/Hospitals studied</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahn et al. (26), 1997</td>
<td>1992–1995 German Hospital Consortium</td>
<td>4,625/?</td>
<td>For patients with acute MI: increased mortality in hospitals with ≤40 acute MI PCI/year.</td>
<td>No risk adjustment</td>
</tr>
<tr>
<td>Magid et al. (27), 2000</td>
<td>1994 - 1999 National Registry of Myocardial Infarction (NRMI), US</td>
<td>62 299 AMI patients (21,973 patients undergoing PCI) / 446</td>
<td>Only patients with AMI treated at hospitals with high- or intermediate- PCI volumes had lower in-hospital mortality with PCI than with thrombolysis. AMI patients treated at low-volume PCI centers had similar mortality outcomes with PCI or thrombolysis.</td>
<td>Risk-adjusted Hospitals classified as low volume (≤16), intermediate volume (17-48), and high volume (≥49) based on their annual PCI volume.</td>
</tr>
<tr>
<td>Canto et al. (28), 2000</td>
<td>1994-1998 National Registry of Myocardial Infarction (NRMI), US</td>
<td>257,602 / 450</td>
<td>Patients with acute MI who are treated at high-volume PCI centers have a lower mortality rate than patients treated at low-volume centers. High-volume centers perform PCI faster.</td>
<td>Risk-adjusted Hospitals divided into quartiles according to PCI hospital volume. No association between volume and mortality among patients treated with thrombolysis.</td>
</tr>
<tr>
<td>Cannon et al. (29), 2000</td>
<td>1994 -1998 National Registry of Myocardial Infarction (NRMI), US</td>
<td>27,080 / 661</td>
<td>A procedure volume >3 PCI/month was associated with lower in-hospital mortality compared with a procedure volume <1 PCI/month or a procedure volume between 1</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients (or PCIs)/Hospitals studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Vakili et al. (30), 2001</td>
<td>New York State Coronary Angioplasty Reporting System Registry, US</td>
<td>1,342 / 32</td>
<td>A higher volume of PPCI procedures performed by physicians and/or hospitals was associated with lower in-hospital mortality rate.</td>
<td>Physicians and Hospitals were ranked according to terciles of annual PPCI volume.</td>
</tr>
<tr>
<td>Vakili et al. (31), 2003</td>
<td>New York State Coronary Angioplasty Reporting System Registry, US</td>
<td>1,342 / 32</td>
<td>The annual total PCI volume of physicians (low- or high-volume) was not related to in-hospital mortality of patients with AMI treated with PPCI. An annual hospital volume >400 PCIs resulted in a 40% reduction in risk of in-hospital mortality for patients treated with PPCI for AMI.</td>
<td>Risk adjusted</td>
</tr>
<tr>
<td>Tsuchihashi et al. (32), 2004</td>
<td>Japanese nationwide registry, Japan</td>
<td>2,491 / 129</td>
<td>After multivariable adjustment, no significant relationships existed between volume and in-hospital mortality and need for CABG.</td>
<td>Risk-adjusted. Hospitals divided into terciles according to their median annual PCI volume for acute MI (low=10; medium=33; high=89).</td>
</tr>
<tr>
<td>Hannan et al. (11), 2005</td>
<td>1998–2000 NY State</td>
<td>107,713 / 34</td>
<td>Significantly higher odds of in-hospital mortality were observed in lower-volume hospitals (for all cutoffs used: 36, 40 or 60 PPCI/year). Odds ratios for mortality were also elevated, although not</td>
<td>Risk-adjusted.</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients (or PCIs)/Hospitals studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Zahn et al. (33), 2005</td>
<td>1994 – 2000 Registry of PCIs in AMI (ALKK), Germany</td>
<td>4815 / 80</td>
<td>PPCI volume at the hospital was an independent predictor of in-hospital mortality.</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Spaulding et al. (34), 2006</td>
<td>2001 – 2002 CARDIO-ARIF Registry, France</td>
<td>37,848 PCIs (emergency and non-emergency procedures) / 44</td>
<td>In-hospital mortality was significantly lower in high-volume PCI center compared with low-volume centers among patients undergoing emergency procedures PCIs. No difference in mortality was noted between low- and high-volume PCI centers for non-emergency procedures.</td>
<td>Hospitals performing <400 PTCA per year were classified as low-volume. Risk-adjusted.</td>
</tr>
<tr>
<td>Ohtsuka Machino et al. (35), 2008</td>
<td>2004 – 2006 Ibaraki Coronary Artery Disease Study (ICAS), Japan</td>
<td>401 / 11</td>
<td>No relationship between hospital PCI volume and in-hospital outcomes (death, CABG, repeat PCI).</td>
<td>High-volume center (>50 PCIs/year). No risk adjustment.</td>
</tr>
<tr>
<td>Shiraishi et al. (36), 2008</td>
<td>2000-2005 AMI-Kyoto Multi-Center Risk Study database, Japan</td>
<td>2,230 / 16</td>
<td>Angiographic results of PPCI in high-volume hospitals were superior to those in low-volume hospitals. No differences observed in crude or adjusted in-hospital mortality in high- vs. low-volume centers.</td>
<td>Hospitals were classified into quintiles based on their annual PPCI volume. The fifth quintile of hospitals was labeled as high-volume, and the other quintiles combined were defined as low-volume.</td>
</tr>
<tr>
<td>Srinivas et al. (37), 2009</td>
<td>2000-2002 New York State PCI</td>
<td>7,321 / 41</td>
<td>High-volume PPCI hospitals (>50 cases/year) and high-volume PPCI physicians (>10</td>
<td>Risk-adjusted</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients (or PCIs)/Hospitals studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Registry, US</td>
<td></td>
<td>cases/year) were associated with lower odds of mortality compared with their respective low-volume counterparts. In-hospital mortality was greater when PPCI was performed by low-volume physicians in low-volume hospitals compared with high-volume physicians in high-volume hospitals. In high-volume hospitals, PPCI by low-volume physicians was associated with significantly worse outcomes compared with high-volume physicians.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001-2007 AHA GWTG Registry, US</td>
<td>29,513 / 166</td>
<td>No significant differences in crude or adjusted in-hospital mortality between tertiles of hospital PPCI volume. Compared with low-volume hospitals, high-volume hospitals have shorter DTB times, larger proportion of patients who achieve ACCF/AHA recommended DTB ≤90 minutes, and greater adherence with evidence-based therapies and recommendations. No differences adjusted mortality based on the total angioplasty volume of hospitals</td>
<td>Risk-adjusted Hospitals were divided into tertiles (< 36, 36-70, and >70 PPCIs/year) based on their annual PPCI volume.</td>
</tr>
<tr>
<td>Kumbhani et al. (38), 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuwabara et al. (39), 2011</td>
<td>2006</td>
<td>8,391 / 303</td>
<td>An inverse association was</td>
<td>Hospitals were divided into</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of patients (or PCIs)/Hospitals studied</td>
<td>Conclusions</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Retrospective analysis from hospitals implementing the Diagnostic Procedure Code, Japan (Adm)</td>
<td></td>
<td>found between PPCI volume and crude in-hospital mortality (p=0.016). After case-mix adjustment, a significant decrease in mortality for patients treated at high-volume (3rd, 4th quartile) compared to the lowest-volume (1st quartile) hospitals.</td>
<td>quartiles based on the number of PCI procedures per half-year (6-13, 14-22, 23-38, 39-134). Risk-adjusted.</td>
</tr>
</tbody>
</table>

ACCF indicates American College of Cardiology Foundation; AHA, American Heart Association; ALKK, Arbeitsgemeinschaft Leitender Kardiologischer Krankenhausarzte (Association of Leading Cardiological Hospital Physicians); AMI, acute myocardial infarction; CABG, coronary artery bypass graft surgery; DTB, door to balloon; MI, myocardial infarction; GWTG, Get With The Guidelines; NCDR®, National Cardiovascular Data Registry; NRMI, National Registry of Myocardial Infarction; PCI, percutaneous coronary intervention; PPCI, primary percutaneous coronary intervention; and PTCA, percutaneous transluminal coronary angioplasty.
<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Population (n)</th>
<th>Endpoints</th>
<th>Mortality</th>
<th>Other results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAAR (2007) (40)</td>
<td>Registry of all PCIs in country</td>
<td>Elective = 28911 STEMI = 5452</td>
<td>30-day mortality, 1-year mortality, Emergency CABG</td>
<td>Elective</td>
<td>Emergency CABG On site surgery = 0.2% No onsite surgery = 0.4% Primary PCI On site surgery = 6.7% No onsite surgery = 7.0%</td>
<td>No difference in 30-day mortality, 1-year mortality, stroke or emergency CABG between groups</td>
</tr>
<tr>
<td>Singh (2009) (41)</td>
<td>Matched case-controlled</td>
<td>Elective = 1842 Non-elective = 667</td>
<td>In-hospital mortality, Emergency CABG, MACE*</td>
<td>Elective</td>
<td>Emergency CABG Elective On site surgery = 0.4% No onsite surgery = 0.2% Non-elective On site surgery = 3.1% No onsite surgery = 2.5%</td>
<td>In-hospital mortality and MACE not different for elective and non-elective patients at sites with and without onsite surgery. Emergency CABG higher for elective patients at sites with onsite surgery</td>
</tr>
<tr>
<td>Kutcher (2009) (42)</td>
<td>NCDR® Registry</td>
<td>Elective = 275114 Non-elective = 33033</td>
<td>In-hospital mortality, Emergency CABG</td>
<td>Non-primary PCI</td>
<td>Emergency CABG Non-primary PCI On site surgery = 0.8% No onsite surgery = 0.8% Primary PCI On site surgery = 5.2% No onsite surgery = 5.1%</td>
<td>Sites without onsite surgery had similar procedure success, in-hospital mortality and emergency CABG rates.</td>
</tr>
<tr>
<td>Singh (2011) (43)</td>
<td>Meta-analysis of 15 studies</td>
<td>Non-primary = 914288 Primary = 124074</td>
<td>In-hospital mortality, Emergency CABG</td>
<td>Non-primary PCI</td>
<td>Emergency CABG Non-primary PCI On site surgery = 0.8% No onsite surgery = 0.9% Primary PCI On site surgery = 5.1% No onsite surgery = 4.6%</td>
<td>STEMI patients: Mortality and emergency CABG not different. Non-primary patients: Overall, emergency CABG and mortality not different, but after adjustment for publication bias, mortality 25% higher at sites without surgery.</td>
</tr>
<tr>
<td>Study (year)</td>
<td>Design</td>
<td>Population (n)</td>
<td>Endpoints</td>
<td>Mortality</td>
<td>Other results</td>
<td>Conclusion</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Zia (2011) (44) | Meta-analysis of 11 studies | Non-primary = 909,813 Primary = 105,993 | In-hospital mortality, Emergency CABG | Non-primary PCI
Onsite surgery = 2.1%
No onsite surgery = 1.6%
Primary PCI
Onsite surgery = 7.6%
No onsite surgery = 6.1% | Emergency CABG
Non-primary PCI
Onsite surgery = 0.9%
No onsite surgery = 1.0%
Primary PCI
Onsite surgery = 3.4%
No onsite surgery = 3.0% | Sites without onsite surgery were not associated with higher in-hospital mortality or emergency CABG. Substantial hospital variability in outcomes for non-primary PCI |
| CPORT-E (2012) (45) | Randomized | Elective only | 6-week mortality, 9 month MACE† | Onsite surgery = 1.0%
No onsite surgery = 0.9% | 9-month MACE
Onsite surgery = 11.2%
No onsite surgery = 12.1% | PCI at hospitals without onsite surgery was not inferior to sites with onsite surgery |

CABG indicates coronary artery bypass graft surgery; CPORT-E, Cardiovascular Patient Outcomes Research Team (CPORT) Non-Primary PCI (CPORT-E); MACE, major adverse cardiac events; NCDR®, National Cardiovascular Data Registry; PCI, percutaneous coronary intervention; SCAAR, Swedish Coronary Angiography and Angioplasty Registry; and STEMI, ST-segment elevation myocardial infarction.

*MACE defined as in-hospital death, q-wave MI, urgent, emergent CABG, stroke
†MACE defined as death, target vessel revascularization, Q-wave myocardial infarction
<table>
<thead>
<tr>
<th>Study</th>
<th>Data Source</th>
<th>No. of PCI procedures (derivation/validation cohorts)</th>
<th>Primary independent variable</th>
<th>Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weintraub et al. (46), 2012</td>
<td>The ACCF NCDR® CathPCI Registry and the Centers for Medicare and Medicaid Services Database, USA</td>
<td>n=343,466 patients (Randomly divided into 60% derivation and 40% validation cohorts).</td>
<td>3-year mortality in elderly patients (≥65 yo) after PCI</td>
<td>Mortality rates were: 3% at 30 days; 9% at 1 year; 13% at 2 years, and 19% at 3 years. A model predicting mortality up to 3 years after PCI included 24 characteristics (related to demographics, comorbidity, prior medical history, and indices of disease severity and acuity).</td>
</tr>
<tr>
<td>de Mulder et al. (47), 2011</td>
<td>The Euro Heart Survey of PCIs</td>
<td>Training cohort: n = 23,032 patients. Validation cohort: n = 23,032 patients.</td>
<td>In-hospital mortality after PCI</td>
<td>In-hospital mortality: 1.3% (validation cohort) A logistic model of 16 independent patient/lesion characteristics was constructed (including PCI indication, age, hemodynamic instability, multivessel CAD, proximal LAD disease). Excellent discrimination (C-index: 0.90) in validation cohort</td>
</tr>
<tr>
<td>Peterson et al. (48), 2010</td>
<td>The ACCF NCDR® CathPCI Registry, USA</td>
<td>Derivation cohort: 181,775 PCI procedures from 2004 to 2006. 2 validation cohorts: (a) contemporary (n=121,183); 2004 - 2006. (b) Prospective (n=285,440 PCIs); March 2006- March 2007.</td>
<td>In-hospital mortality after PCI</td>
<td>In-hospital mortality: 1.3% (0.7% in elective PCI; 4.8% after STEMI). A simplified NCDR® risk score was developed based on 8 key pre-procedure factors. Excellent discrimination (c-index: 0.91). Discrimination and calibration were retained among specific patient subgroups, and when used to estimate 30-day mortality rates among Medicare patients.</td>
</tr>
<tr>
<td>Hamburger et al. (49), 2009</td>
<td>The British Columbia Cardiac Registry (BCCR)</td>
<td>Patients (total n=32,899) were divided into: (a) Training cohort (n=26,350; 2000-2004). (b) Validation cohort (n=6,549; 2005)</td>
<td>30-day mortality after PCI</td>
<td>30-d mortality: 1.5% Area under the ROC curve: 91.1% (validation set)</td>
</tr>
<tr>
<td>Mehta et al.</td>
<td>The ACCF NCDR®</td>
<td>302,152 PCI procedures performed</td>
<td>Bleeding risk after PCI</td>
<td>Bleeding complications occurred in 2.4% of patients.</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of PCI procedures (derivation/validation cohorts)</td>
<td>Primary independent variable</td>
<td>Predictors</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>(50), 2009</td>
<td>CathPCI Registry, USA</td>
<td>at 440 US centers participating in the NCDR® Registry (80% population sued as training cohort; validation done in 20% of population and subgroups).</td>
<td>PCI bleeding complications defined as (bleeding required transfusion, prolonged LOS, drop in Hb >3.0 g/dL)</td>
<td>A parsimonious risk algorithm was developed, including the following predictors of bleeding: age, gender, previous HF, GFR, PAD, no previous PCI, class IV HF, STEMI, NSTEMI, cardiogenic shock.</td>
</tr>
<tr>
<td>Brown et al. (51), 2008</td>
<td>2003 - 2005 Northern New England, USA</td>
<td>n=11,141 patients (derivation cohort) undergoing PCI without dialysis in northern New England</td>
<td>SRD after PCI (defined as new dialysis, (\geq 2.0) mg/dL or (\geq 50%) increase in creatinine)</td>
<td>SRD occurred in 0.74% of patients. SRD was associated with in-hospital mortality of 19.3% versus 0.9% in those without SRD. A risk model included: Preprocedural creatinine, CHF, DM, accounted, urgent/emergent PCI, IABP, age (\geq) 80 yo, sex. Validation on 2006 PCI procedures demonstrated excellent discrimination (area under ROC curve: 0.84)</td>
</tr>
<tr>
<td>Chowdhary et al. (52), 2009</td>
<td>2000-2008 The Toronto PCI registry</td>
<td>Derivation cohort: 10,694 patients. Validation cohort: 5,347 patients.</td>
<td>In-hospital mortality after PCI</td>
<td>In-hospital mortality: 1.3%. Independent predictors with associated risk weights in parentheses were as follows: age, DM, diabetes, RF, NYHA class IV HF, LVEF, MI in prior mo, multivessel CAD, LM-CAD, rescue/ facilitated PCI, primary PCI, shock. The model had an area under the ROC curve: 0.96</td>
</tr>
<tr>
<td>Singh et al. (53), 2007</td>
<td>2000-2005 The Mayo Clinic Registry</td>
<td>Analysis population: 9,035 PCIs on 7640 unique patients from 2000 through 2005.</td>
<td>In-hospital mortality after PCI In-hospital MACE after PCI</td>
<td>Excellent discrimination (areas under the ROC curve were 0.74 and 0.89 for MACE and procedural death, respectively) Validation of the Mayo risk score for in-hospital mortality was subsequently undertaken in a cohort of 309,351 patients from the NCDR® Registry (2004 - 2006).</td>
</tr>
<tr>
<td>Study</td>
<td>Data Source</td>
<td>No. of PCI procedures (derivation/validation cohorts)</td>
<td>Primary independent variable</td>
<td>Predictors</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Wu et al. (54), 2006</td>
<td>2002-2003 the New York State PCI Registry</td>
<td>Derivation cohort: 46,090 procedures performed in 41 hospitals in the NY State PCI Registry in 2002 Validation cohort: Data from the 2003 New York Registry</td>
<td>In-hospital mortality for PCI</td>
<td>Risk score included 9 significant risk factors (age, gender, hemodynamic state, EF, pre-procedural MI, PAD, CHF, RF, LM-CAD) The risk score for mortality was strongly associated with complication rates and LOS.</td>
</tr>
</tbody>
</table>

ACCF indicates American College of Cardiology Foundation; CAD, coronary artery disease; CHF, Congestive Heart Failure; Cr, creatinine; DM, diabetes mellitus; GFR, glomerular filtration rate; Hb, hemoglobin; HF, heart failure; IABP, intra-aortic balloon pump; LAD, left anterior descending; LM-CAD, left-main coronary artery disease; LOS, length of stay; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac events; MI, myocardial infarction; NCDR®, National Cardiovascular Data Registry; NSTEMI, non-ST segment elevation myocardial infarction; NYHA, New York Heart Association; PAD, peripheral arterial disease; PCI, percutaneous coronary intervention; PAD, peripheral arterial disease; RF, renal failure; ROC, receiver operating characteristic; SRD, serious renal dysfunction; and STEMI, ST segment elevation myocardial infarction.
References

© 2013 by the American College of Cardiology Foundation; American Heart Association, Inc.; and the Society for Cardiovascular Angiography and Interventions

